
Deadlocks

The Deadlock Problem (1)

 A set of blocked processes each holding a
resource and waiting to acquire a resource held
by another process in the set.

 Example
◦ System has 2 disk drives.

◦ P1 and P2 each hold one disk drive and each needs
another one.

 Example
◦ semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

The Deadlock Problem (2)

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

 Several cars may have to be backed up if a deadlock occurs

 Starvation is possible

System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as

follows:

◦ request

◦ use

◦ release

Deadlock Characterization (1)

 Necessary and sufficient conditions for a deadlock
◦ Mutual exclusion: only one process at a time can use a

resource

◦ Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

◦ No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task

◦ Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is
held by P1, P1 is waiting for a resource that is held by P2,
…, Pn–1 is waiting for a resource that is held by Pn, and P0
is waiting for a resource that is held by P0

Deadlock Characterization (2)

 Resource-allocation graph

If no cycle exists then there is no deadlock

(necessary condition)

If a cycle exists then there may be a deadlock

(a cycle is a necessary and sufficient condition for deadlock when

resources involved have a single instance)

Deadlock Characterization (3)

Methods for Handling Deadlocks (1)

 Use a protocol that prevents or avoids deadlocks

◦ Deadlock prevention: ensure that one of the necessary
conditions cannot hold

◦ Deadlock avoidance: keep track of available and allocated
resources and future requests and releases to decide whether
the current request should be satisfied or not

 Allow deadlocks to occur but detect them and recover

 Ignore the problem

◦ Most popular approach (deadlocks tend to be rare)

 Unix, Windows, Java

◦ Manual restart to recover (mechanism may be useful in other
situations too)

 Different approaches may be preferable for different
resources

Methods for Handling Deadlocks (2)

 Handling deadlocks in Java
◦ suspend(), resume(), stop()

Deadlock Prevention
 Mutual exclusion

◦ Sharable and non-sharable resources

◦ For non-sharable resources this is not an option

 Hold and wait

◦ Request all resources at the beginning

◦ Request resource only when you hold none

◦ - poor resource utilisation

◦ - starvation is possible

 No preemption

◦ Preempt all currently held resources when a request cannot be immediately granted

◦ Preempt resource currently held by a waiting process

◦ Only applicable to resources whose state can be easily saved and restored

 Circular wait

◦ Impose total ordering on resources, acquire resources in ascending order (all
instances at the same time)
 Follow the normal order of usage

◦ Works only if developers follow the protocol!
 Witness: lock order verifier

Deadlock Avoidance (1)

 Requires that the system has some additional a priori information
available

◦ Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

◦ The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition

◦ Resource-allocation state is defined by the number of available and allocated
resources, and the maximum demands of the processes

 Safe state

◦ If there exists a sequence <P1, P2, …, Pn> of ALL the processes in the
systems such that for each Pi, the resources that Pi can still request can be
satisfied by currently available resources + resources held by all the Pj, with j
< i

 An unsafe state may lead to a deadlock

 As long as the state is safe, the OS can avoid unsafe states (and deadlocks)

◦ - resource utilisation may be low

Deadlock Avoidance (2)

 Resource allocation graph
◦ System with only one instance of each resource

◦ Claim edges: dashed line, the process may request the
resource in the future
 Claim edge converts to request edge when a process requests a

resource

 Request edge converted to an assignment edge when the
resource is allocated to the process

 When a resource is released by a process, assignment edge
reconverts to a claim edge

 Resources must be claimed a priori in the system

◦ Requests can be granted only if converting the request
edge to an assignment edge does not result in the
formation of a cycle in the resource allocation graph
 Cycle detection algorithm of order n square in the number of

processes

Deadlock Avoidance (3)

P2 request R2

Deadlock Avoidance (4)

 Banker’s algorithm
◦ Multiple instances of each resource type
◦ Less efficient than the resource allocation graph

algorithm
◦ Let n = number of processes, and m = number of

resources types
 Available: Vector of length m. If available [j] = k, there are

k instances of resource type Rj available.
 Max: n x m matrix. If Max [i,j] = k, then process Pi may

request at most k instances of resource type Rj.
 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is

currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j]

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state

Deadlock Avoidance (5)

2nm◦ Safety algorithm

Deadlock Avoidance (6)

Requesti = request vector for process Pi.

If Requesti [j] = k then process Pi wants k instances of
resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state is restored

Deadlock Avoidance (7)

 Example
◦ 5 processes P0 through P4;

3 resource types: A (10 instances), B (5 instances), and C (7
instances)

Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Deadlock Avoidance (8)

The content of the matrix Need is defined to be Max –

Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2,

P0> satisfies safety criteria

Deadlock Avoidance (9)

P1 Request (1,0,2)

Check that Request Available (that is, (1,0,2) (3,3,2) true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0,
P2> satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

Deadlock Detection (1)

 Single instance of each resource type

◦ Wait-for graph
 Nodes are processes

 Pi Pj if Pi is waiting for Pj

◦ Periodically invoke an algorithm that searches for a cycle in the graph. If
there is a cycle, there exists a deadlock

◦ An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

Deadlock Detection (2)
 Several instance of each resource type

◦ Available: A vector of length m indicates the number of available resources of each type.

◦ Allocation: An n x m matrix defines the number of resources of each type currently
allocated to each process

◦ Request: An n x m matrix indicates the current request of each process. If Request [ij] = k,
then process Pi is requesting k more instances of resource type Rj

◦ Detection algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state. Moreover, if
Finish[i] == false, then Pi is deadlocked.

2nm

Deadlock Detection (3)

 Five processes P0 through P4; three resource types A (7 instances),

B (2 instances), and C (6 instances)

Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Deadlock Detection (4)

 P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests

Deadlock exists, consisting of processes P1, P2, P3, and P4.

Deadlock Detection (5)

 When, and how often, to invoke depends on:

◦ How often a deadlock is likely to occur?

◦ How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily,

there may be many cycles in the resource

graph and so we would not be able to tell

which of the many deadlocked processes

“caused” the deadlock

Recovery from Deadlock

 Process termination
◦ Abort all deadlocked

processes

◦ Abort one process at a time
until the deadlock cycle is
eliminated

◦ In which order should we
choose to abort?
 Priority of the process

 How long process has
computed, and how much
longer to completion

 Resources the process has
used

 Resources process needs to
complete

 How many processes will need
to be terminated

 Is process interactive or batch

 Resource preemption

◦ Selecting a victim –

minimize cost

◦ Rollback – return to

some safe state, restart

process for that state

◦ Starvation – same

process may always be

picked as victim, include

number of rollback in

cost factor

For contemplation (1)

 Consider the deadlock situation that could occur in the dining
philosophers problem when the philosophers obtain the chopsticks
one at a time. Discuss how the four necessary conditions for
deadlock indeed hold in this setting. Discuss how deadlocks could
be avoided by eliminating any one of the four conditions.

 Compare the circular-wait scheme with the deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

◦ Runtime overheads

◦ System throughput

 Java’s locking mechanism (the synchronized statement) is
considered reentrant. That is, if a thread acquires the lock for an
object (by invoking a synchronized method or block), it can enter
other synchronized methods or blocks for the same object. Explain
how deadlock would be possible if Java’s locking mechanism were
not reentrant.

For contemplation (2)
 Consider the traffic deadlock depicted in the figure.

◦ Show that the four necessary conditions for deadlock indeed hold in this example.

◦ State a simple rule for avoiding deadlocks in this system.

 Consider the following snapshot of a system:

Allocation Max Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

◦ What is the content of the matrix Need?

◦ Is the system in a safe state?

◦ If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?

For contemplation (3)

 Consider a system consisting of four resources of
the same type that are shared by three processes,
each of which needs at most two resources.
Show that the system is deadlock-free.

 Consider a system consisting of m resources of
the same type, being shared by n processes.
Resources can be requested and released by
processes only one at a time. Show that the
system is deadlock free if the following two
conditions hold:
◦ The maximum need of each process is between 1 and

m resources

◦ The sum of all maximum needs is less than m + n

