
Exercises r27

3.8 Modify the date server shown in Figure 3.26 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.27 canbe used to read
the multi-line fortunes returned by the fortune server.

3.9 An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! tlne
server will respond with the exact data it received from the client-that
is, Hello there!

Write an echo server using the Java networking ApI described in
Section 3.6.1. This server will wait for a client connection using the
accept O method. When a client connection is received, the server will
loop, performing the following steps:

o Read data from the socket into a buffer.

o Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server is shown in Figure 3.26 uses the class
java.io.BufferedReader. BufferedReader extends the class
j ava. io . Reader, which is used for reading character streams. However,
the echo server cannot guarantee that it will read characters from clients;
it may receive binary data as well. The class java.io.InputStrean
deals with data at the byte level rather than the character level. Thus,
this echo server must use an object that extends j ava. io . InputStream.
The readO method in the java.io.InputStream class returns -1
when the client has closed its end of the socket connection.

3.10 Write an RMI application in which the server delivers random one-line
fortunes. The interface for the remote object appears as

inpo r t j ava . rm i . * ;

public interface RemoteFortune extends Remote
1

public abstract String getFortuneo

_ throws RemoteException;
J

A client invoking the getFortune O method will receive a random
one-line fortune from the remote obiect.

roject-Creating a Shell lntefface

This project consists of modifying a Java program so that it serves as a shell
interface that accepts user commands and then executes each command in a
separate process external to the Java virtual machine. A shell interface provides
the user with a prompt, after which the user enters the next command. The
example below illustrates the prompt j sh> and the user's next command: cat

128 Chapter 3 Processes

i m p o r t j a v a . i o . * i

publ ic class SinpleShel l

t
pub l i c s ta t i c vo id ma in(St r ing [1 a rgs) th rows java . io . r0Except iox

Str ing conmandl ine;
BufferedReader console = new BufferedReader

(new InputStreamReader(Systen. in)) ;

/ / we break out with <control><C>
whi le (true) {

/ / read what the user entered
Systen . out . pr int (" j sh> ") ;
commandl ine = console.readl l -neO ;

/ / i t the user entered a return, just loop again
i f (conmand l ine . equa ls (" "))

con t inue:

/ * * The s teps are :
(1) parse the input to obtain the command and any paraneters
(2) c rea te a ProcessBu i lder ob iec t
(3) s ta r t the process
(4) obtain the output stream

-) ,U,

output the contents returned by the comnand x/

J

i
Figure 3.35 Outline of simple shell.

Prog. j ava. This command displays the file Prog. j ava on the terminal using
the UNIX cat command.

jsh> cat Prog. java

Perhaps the easiest technique for implementing a shell interface is to have
the program first read what the user enters on the command line (here, cat
Prog. j ava) and then create a separate external process that performs the
command. We create the separate process using the ProcessBuilder () object,
as illustrated in Figure 3.13. In our example, this separate process is external to
the JVM and begins execution when its runO method is invoked.

Simple Shell

A Java Program that provides the basic operations of a command-line shell
is supplied in Figure 3.35. The nain () method presents the prompt j sh> (for
j ava shell) and waits to read input from the user. The program is terminated
when the user enters (Control)(C).

an
ch

Cr

Th
SO

thr

Pa
USr

the

Par
do

A j

sec
nur
acc

Prc

PIO
furr

Chi

The
dirr
dire
allo
this
entt
con
all t

the

Whr
will
a c u
subr
befc

Exercises r29

-This project is organized into three parts: (1) creating the external process
and executing the command in that process, (2) modifying the shell to allow
changing directories, and (3) adding a history feature.

Creating an External Process

The- first part of this project is to modify the main O method in Figure 3.35
so that an external_process is created and executes the command speilfied by
the user. Initially, the command must be parsed into separate parameters and
passed to the constructor for the ProcessBuilder object. Foiexample, if the
user enters the command

jsh> ca t P rog . j ava

the parameters are (1) cat and (2) Prog. j ava, and these parameters must be
passed_to the ProcessBuilder constructor. Perhaps the easiest strategy for
doing this is to use the constructor with the following signature:

public ProcessBuilder (List<String> comnand)

A j ava. util . Arraylist-which implements the j ava. util- . List interface
-can be used in this instance, where the first element of the list is cat and the
second element is Prog . j ava. This is an especially useful strategy because the
number of arguments passed to UNIX commands may vary (the cat command
accepts one argument; the cp conunand accepts two, and so forth).

If the user enters an invalid command, the start O method in the
ProcessBuirder class throws an j ava. io . r0Exception. If this occurs, your
Program should ogtput an appropriate error message and resume waiting for
further command from the user.

Changing Directories

The next task is to modify the program in Figure 3.35 so that it changes
directories. In UNIX systems, we encounter the concept of the curuent working
directory, which is simply the directory you are currently in. The cd command
allows a user to change current directories. Your shell interface must support
this command. For example, if the current directory is /',a,sr/ton and the user
enters cd musi-c, the,current directory becomes /:usr /tom/music. Subsequent
commands relate to this current directory. For example, entering Is will output
all the files in /usr/tom/musi-c.

The ProcessBuilder class provides the following method for changing
the working directory:

publ ic ProcessBui lder d i rectory(f i te d i rectory)

When the st art () method of a subsequent process is invoked, the new process
will use this as the current working directory. For example, if one process with
a current working directory of /usr/tom invokes the command cd music,
subsequent processes must set their working directories to /usr/tom/music
before beginning execution. It is important to note that your program must

130 Chapter 3 Frocesses

first make sure the new path being specified is a valid directory. If not, your
program should output an appropiiaie error message.

If the user enters the command "a, change the iurrent working directory
to the user's home directory. The home direitory for the current user can be
"olllned

by invoking the stitic getPropertyO method in the system class asIollows:

Systen. getProperty (' ,user . dir ") ;

Adding a History Feature

Y:U:t:-:-n:l! t:.vide
a histo.ry feature that allows users to see the history

3i:"nryr_ll]:I
have entered and to rerun a command from that history.

lhe hlstory includes all commands that have been entered by the user since
the shell was invoked. For example, if the user entered the history command
and saw as output:

0 pwd
1 l s - 1
2 cat Prog. java

the history would list pwd as the first command entered, rs -1 as the second
command, and so on.

.--. MSily your shell Program so that commands are entered into a history.(Hint: The j ava. utir . Arraylist provides a useful autu ,t*.t;;;;;;.d"
these commands.)

-6

Your program must allow users to rerun commands from their history by
supporting the following two techniques:

2.

when the user enters ! !, run the previous cofiunand in the history. If
there is no previous command, output an appropriate error message.
\Atrhen the user enters !<integer value i >, run the i th command in
the history. For example, entering 14 would re-run the 4th command in
the command history. Make srrJyo'perform proper error checking to
ensure that the integer value is a valid number in the command histo"ry.

Bibliographieal Notes

Interprocess communication in lhe RC 4000 system was discussed by Brinch-
Hansen 17970]. schlichting and schneiaer itot4 air""s"J uryr1.nro.,or6
message-Passing primitives. The IPC facility implemented at the user level
was described by Bershad et al. [19901.

Details
9{llr"lPtocess communication in uNIX systems were presented

by Gray 119971. Barrera [7991] and Vahalia [1996)'described inierprocess
communication in the Mach system. Solomon and Russinovich [2O0Ol and
Stevens [1999] outlined interprocess communication in Windows 2000 and
UNIX respectively.

