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Key Research Pointers 

Mobility challenges old assumptions and demands novel software engineering solutions 
including new models, algorithms, and middleware. 
Coordination mechanisms must be developed to bridge effectively a clean abstract model 
of mobility and the technical opportunities and complexities of wireless technology, 
device miniaturization, and code mobility. 
Logical mobility opens up a broad range of new design opportunities, physical mobility 
forces consideration of an entirely new set of technical constraints, and the integration of 
the two is an important juncture in the evolution of software engineering as a field. 
Key concepts shaping software engineering research on mobility are the choice of unit of 
mobility, the definition of space and location, and the notion of context management. 
Middleware is the most likely vehicle by which novel perspectives on mobility grounded in 
clean formal models and effective technical solutions will make their way into industrial 
practice. 
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A b s t r a c t  
The term distributed computing conjures the image of 
a fixed network structure whose nodes support the ex- 
ecution of processes that communicate with each other 
via messages traveling along links. Peer-to-peer commu- 
nication is feasible but client-server relationships domi- 
nate. More recently, servers have been augmented with 
brokerage capabilities to facilitate discovery of avail- 
able services. Stability is the ideal mode of operation; 
changes are relatively slow; even in the case of failure, 
nodes and links are expected eventually to come back 
up. By contrast, mobility represents a total meltdown 
of all the stability assumptions (explicit or implicit) 
associated with distributed computing. The network 
structure is no longer fixed, nodes may come and go, 
processes may move among nodes, and even programs 
(the code executed by processes) may evolve and change 
structure. The challenges and opportunities associated 
with this computational melee form the main subject of 
this paper. We seek to sort out this chaotic form of com- 
puting by focusing our attention on the formulation of 
a simple framework for viewing mobility, on precise def- 
inition of terms, and on research issues mobility poses 
for the software engineering community. 

1 I n t r o d u c t i o n  
Software engineering focuses on the study of software ar- 
tifacts, people as (imperfect) producers of software, and 
processes as (approximate) guarantors of software qual- 
ity. Yet, the best way to start understanding mobility is 
to leave behind this software-centric perspective and to 
ask a broader question: What is happening today with 
computing in the societyat large? It is not at all difficult 
to see that computing is drifting away from computers. 
We have been trained to place software at the center 
of the computing field and at the heart of the systems 
we build. In reality, a strong centrifugal force is driving 
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computing (along with its hardware and software struc- 
tures) closer and closer towards the surrounding fabric 
of the society, its infrastructures, its enterprises, and 
its people. Increasingly, computing is being taken for 
granted in the same manner that we ignore electricity, 
the complexities of television broadcast technology, and 
the presence of motors throughout automobiles t oday - -  
they are there, somewhere, but we no longer think of 
them. Commodity computers are likely to end up close 
to our bodies and in our clothing. Smart sensors will 
be found in elements of building structures or car parts. 
The distinction between electronic and traditional en- 
terprises is already blurred. A dynamic society pro- 
motes and assimilates likewise computing structures. A 
society on the move demands computing structures that 
are mobile, malleable and available at any location. New 
kinds of networking architectures are emerging. 

In the traditional static network, fixed hosts with stati- 
cally assigned (IP) addresses exchange messages via the 
standard Internet infrastructure of fixed routers and 
switches. At the periphery of this fixed network one 
can envision base stations (fixed routers with wireless 
communication capabilities) that control message traf- 
fic to and from mobile hosts forming a dynamic fringe. 
Some of them may have fixed addresses while others 
may acquire temporary addresses as the need arises. 
Ultimately, mobile hosts can detach themselves com- 
pletely from the fixed infrastructure and may evolve in- 
dependently of it. Such clouds are cMled mobile ad hoc 
networks. They are opportunistically formed structures 
that change rapidly in response to the movement of the 
carriers to which the mobile hosts are attached. For the 
time being, communication within ad hoc networks is 
point to point over a physical broadcast medium, the 
airwaves. However, growth in performance and capa- 
bilities (e.g., new protocols) eventually will allow some 
of the mobile units to start serving as mobile routers 
for others in the area. Through transitivity, routing in 
ad hoc networks will expand the connectivity pattern 
beyond the limits of an immediately accessible region. 

Across this highly dynamic physical structure a logi- 
cal layer still more fluid is emerging. Code mobility 
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removes the static binding between the software com- 
ponents of a distributed application and the network 
hosts where they are executing. Relocation of such com- 
ponents is then enabled, to achieve a higher degree of 
flexibility and customizability, or improved bandwidth 
utilization. More radical views encompass migration of 
execution units which become regarded as mobile agents 
autonomously performing tasks without requiring per- 
manent connectivity towards the client. Although the 
interest in code mobility is being popularized and am- 
plified by the success of the Java language, the relevance 
of mobile code is not only technological. This form of 
logical mobility has the potential to completely change 
the way distributed applications are conceived and de- 
ployed, by raising the location of components to the 
status of a first class design concept. 

Sorting out the software engineering implications of this 
intriguing and perplexing wave of technological changes 
is a nontrivial task. Without any pretense of being com- 
prehensive in its coverage, this paper identifies impor- 
tant  research areas and puts forth a conceptual frame- 
work for thinking about mobility. In our view, space 

and coord ina t ion  are  the two most critical dimensions 
to be considered in any systematic t reatment  of mobil- 
ity. They provide the basis for drawing the distinction 
between distributed and mobile computing and for dif- 
ferentiating among various perspectives on mobile com- 
puting. 

The remainder of the paper is organized as follows. Sec- 
tion 2 explores the notion that  variations in the defini- 
tion of space and in the choice of coordination mecha- 
nisms can offer meaningful insights in the way different 
systems treat  mobility. Section 3 is concerned with the- 
oretical aspects of software engineering. They include 
formM models, which seek to uncover fundamentM prin- 
ciples and essential features, and algorithms, which need 
to be revisited in the context provided by mobility. Sec- 
tion 4 is divided among applications and middleware. 
Applications are important because it is ultimately the 
end user that  will determine the success and failure of 
the various technologies. Middleware is the area likely 
to see the greatest level of research activity as the de- 
mand for rapid deployment of dependable new appli- 
cations increases. Each subsection examines relevant 
trends and identifies key research areas. Conclusions 
appear in Section 5. 

2 M o b i l e  C o m p u t i n g  
A world of abundant, untethered, portable (even wear- 
able), and unobtrusive computers is made possible only 
by the unique combination of two powerful trends: rapid 
component miniaturization and the emergence of high- 
speed wireless communication. As the number of com- 
ponents per unit of space grows (eventually reaching 
into the hundreds) running wires is no longer feasible. 

The same is true when components are carried around 
by human beings from one setting to another or when 
they reside on moving platforms such as cars and air- 
planes. Wireless communication (be it radio or infrared) 
is the only viable link among mobile components which 
aggregate together to form complex structures mostly 
due to proximity and shared functionM needs or connect 
seamlessly to the wireline networks as they change loca- 
tion. The communication industry is actively pursuing 
these opportunities by investing in new wireless tech- 
nologies (e.g., wireless LAN speeds in excess of 10Mbps), 
by cooperating in the establishment of interoperabil- 
ity standards (e.g., IEEE 802.11b High Rate standard), 
and by forming powerful consortia. The IETF  Mobile 
Ad Hoc Networks (Manet) Working Group is consider- 
ing standardization efforts based on IP technology. The 
list of consortia includes: 3G.IP which focuses on high 
bandwidth wireless technology using W-CDMA; Blue- 
tooth which uses frequency hopping and is designed to 
provide low-cost support for small groups of co-located 
devices; and others which promise home networks (via 
a Shared Wireless Access Protocol or SWAP) or Web 
page delivery to low-bandwidth devices (via a Wireless 
Application Protocol or WAP). 

Of course, wireless communication is not the same thing 
as delivery of data  to a mobile unit. The latter presup- 
poses the ability to find the current location of the unit 
and to continue to send data  as the unit moves from 
one place to another. Cellular phone systems accom- 
plish this through a combination of broadcasts (to notify 
the unit about  the incoming call) and hand-off proto- 
cols (to maintain the connection in the face of move- 
ment). In the Internet setting, special protocols, such 
as Mobile IP, have been designed to enable packet de- 
livery while a mobile unit is away from its home base. 
The next version of IP (IPv6) is" anticipated to pro- 
vide still bet ter  support for transparent packet delivery 
to mobile units away from their home networks. Ef- 
forts are also under way to respond to the special needs 
of ad hoc networks. Rapidly changing topology ren- 
ders impractical many well-established routing strate- 
gies such as link-state and distance-vector. New vari- 
ants are being proposed and evaluated. They include 
Temporally Ordered Routing Algorithm (TORA) [35], 
Dynamic Source Routing (DSR) [7], and Ad hoc On de- 
mand Distance Vector (AODV) [36]. A common feature 
among all three is their reactive nature, i.e., routing in- 
formation is built in response to the demand to commu- 
nicate among specific hosts. The provision of multicast 
services is still another area receiving much attention in 
the mobile setting. 

Even though one might expect to see the concern with 
mobility reach into the next layer of the computing host 
architecture, the operating system, this does not seem 
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to be the case at this time. The communication sub- 
strate, in general, continues to be tightly integrated in 
the fabric of the operating system services without actu- 
ally affecting its design in any significant way. Actually, 
the impact of mobility on systems research and develop- 
ment is manifest mostly at the language and middleware 
levels. Languages are likely to continue to be dominated 
by the concerns of code mobility. With the emergence 
of Java and its well-integrated code-on-demand capabil- 
ities, both mobile code languages (e.g., Obliq) and mo- 
bile agent languages (e.g., Agent Tcl) are losing ground 
even as mobility in all its forms is growing in signifi- 
cance. Middleware is emerging as one of the most fertile 
areas of systems research in mobility. This is, in part,  
because specialized languages have lost favor with prac- 
titioners and researchers alike. New languages require 
too great an investment and entail unacceptable risks 
while middleware can take advantage of the deployed 
software infrastructure while providing clean high-level 
programming abstractions in languages already avail- 
able today. Middleware hides the protocol layer but 
makes explicit the key concepts involved in the devel- 
opment of mobile applications, e.g., the management 
of location data, event notification, quality of service 
assessment, adaptability, etc. Middleware can be spe- 
cialized for logical or physical mobility or may combine 
the two in a single cohesive package. Ultimately, re- 
search on protocols, operating systems and languages 
for mobility will not represent a major concern for the 
software engineering community. It  is the concern with 
models, algorithms, applications and middleware that  
will dominate software engineering research on mobility 
in the decade to come. 

From a software engineering perspective, we view mo- 
bile computing to be the study of systems in which com- 
putational components may change location. Suitable 
locations are points in a space that  may be continuous 
or discrete. At a very coarse level, spaces can be of two 
types: physical and logical. Physical mobility entails 
the movement of mobile hosts in a building or even large 
regions of the earth, i.e., a subset of the physical space 
we occupy on the planet and beyond. Logical mobility 
involves mobile units (of code and state) that  migrate 
among  hosts. Typically, the hosts are stationary and 
the mobility space reflects directly the structure of the 
underlying network. It  should be immediately apparent 
that  this simple distinction may be an accurate charac- 
terization of past developments but that  it is woefully 
inadequate of current trends, which are likely to allow 
for mobile units to migrate among both mobile and sta- 
tionary hosts. This is why a careful characterization of 
the mobility space and of the patterns of movement that  
it permits is important.  

Prevailing terminology in mobile computing is tied 

to specific, albeit successful, types of applica- 
tions/configurations that  do not reflect the potential 
richness of the field. In the case of physical mobility, 
for instance, we often distinguish between nomadic com- 
puting and ad hoc networks. The former is a term that  
denotes systems consisting of a fixed core network and 
a fringe of mobile hosts that  connect to it via base sta- 
tions. Here, space may be used to distinguish between 
the cellular structure of the phone networks and the 
kind of systems that  rely on wireless LANs. Ad hoc 
networks refers to systems consisting of mobile hosts 
exclusively. Hosts are connected to each other when 
they are within communication range. An individual 
mobile host may or may not act as an ad hoc router 
for the benefit of its neighbors. A more refined char- 
acterization of such systems is needed. Moving along 
train tracks, interacting within the confines of a single 
room, and roaming across the sky lead to very different 
classes of ad hoc networks. It is the definition of space 
that  can provide clean and useful formalizations of such 
subclasses. In general, as the technology matures and 
specialized applications emerge one should expect to see 
mobility spaces with increasingly complex structures. 
Movement in multidimensional spaces may turn out to 
be a useful concept, e.g., administrative domains may 
be viewed as another spatial dimension, orthogonal to 
the geographic coordinate system. 

Once we consider the notion that  programs can move 
through physical and logical spaces, it is only natural 
to start  wondering what happens when they meet. How 
do they recognize each other as friends or foes? How 
do they exchange information? How do they construct 
complex cooperative behaviors? These and other simi- 
lax questions are all about coordination. Coordination 
is important  in mobile computing because of the need 
to decouple, both conceptually and pragmatically, the 
t reatment  of the individual components from the man- 
ner in which they interact with each other. By focusing 
on coordination one can limit the extent to which com- 
ponents need to be aware of each other, especially when 
one realizes that  they may never know in advance with 
whom and where interactions will take place. This is 
because coordination brings about a world view that  
is centered, metaphorically speaking, on the social dy- 
namics rather than the individual personalities. If  much 
of the research on concurrency looked at components 
(i.e., processes) from inside out, coordination seeks to 
view components (i.e., mobile units) from outside in. 
In one case we ask the question how shared variables 
are accessed while in the other case we ponder about 
how variables are shared. Coordination is concerned 
primarily with the mechanisms (usually supplied by the 
middleware or the operating system) needed to discover 
who is around, to exchange information, to synchronize 
actions, etc. This is why the manner in which mobile 
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components interact with each other becomes an impor- 
tant differentiating feature among systems that support 
mobility. 

Let us consider, for instance, the problem of discover- 
ing who else is there. One solution is to provide some 
sort of known registry that can be interrogated, e.g., 
a name server. Another approach is to rely on pass- 
ing around acquaintances, i.e., one becomes aware of 
the presence of others through the grapevine. Broad- 
cast may be used to announce one's presence, if there is 
agreement on the broadcast protocol to be used. In all 
cases, some a priori agreement is needed--often called 
metalevel communication. In mobile computing, the 
question becomes how to minimize such common knowl- 
edge in order to maximize the open character of the sys- 
tems we build. Message passing protocols traditionally 
provided the standard interface among units when wire- 
less communication is involved. Shared variables (or 
objects) are frequently present in mobile agent systems. 
Recently, shared tuple spaces, in a variety of forms, are 
gaining in popularity. The trend towards more abstract 
coordination mechanisms is a very positive development 
because it holds the promise for facilitating rapid and 
dependable development of mobile applications. 

Another coordination concern, synchronization, may as- 
sume a variety of forms, from the familiar to the ex- 
otic. All types of statement synchronization may be 
encountered in mobile systems. New forms of synchro- 
nization involve the notion of location. For instance, a 
group of robots may start congregating together due to a 
predilection to migrate towards one another. Similarly, 
components may seek to move as a group by preserv- 
ing connectivity, i.e., by staying within communication 
range. One can also envision diffused forms of synchro- 
nization in which aggregate information is used to de- 
cide on direction of movement. This would be the case 
when components may be biased to migrate towards 
areas of the space where a lot of communication is tak- 
ing place or where the signal is stronger without actu- 
ally making contact with any specific component in the 
range. Of course, coordinated movement can be accom- 
plished by taking advantage of the properties of space 
and relative speeds. Two hosts moving along parallel 
trajectories at constant speed will remain equidistant, 
for instance. 

Coordination mechanisms can also be classified as be- 
ing explicit or implicit. The former happens when one 
component refers to another for the purpose of sending 
a message across. The latter form is encountered when 
the underlying system makes the coordination transpar- 
ent to the components involved. A change in context or 
the arrival of an event may be the result of transparent 
coordination activities perceived by the unit as sponta- 
neous changes in the programming context. One par- 

ticularly interesting mechanism for effecting a change in 
context may be the result of code movement. The unit 
may not be aware that any coordination took place, yet 
its behavior may be altered dramatically. Variations in 
the granularity of the code being shipped around de- 
serve to be investigated as well. 

Implicit in much of the discussion above is the notion 
that coordination among mobile hosts or units takes 
place whenever they are in touch with each other. How- 
ever, the notion of being in touch entails careful analysis. 
One may be tempted to assume that  components can 
coordinate with each other when they are co-located. 
Two agents may arrive on the same server or two hosts 
may find themselves in the same vicinity (on the same 
wireless LAN). Unfortunately, such a view ignores con- 
siderations having to do with security, administrative 
domains, or quality of service. A weak radio link with 
high error rates may need to be ignored; a good con- 
nection that cannot deliver the desired bandwidth for 
a multimedia application may not be of any use either. 
The basic concept of co-location is right but its defini- 
tion is complex. There is a need to Mlow for flexible 
specification of the conditions under which co-location 
actually permits coordination to take place. 

Since co-location is a binary relation, it is natural to 
raise the issue of whether the relation is symmetric 
and/or  transitive. For most researchers, communication 
is two-way because the kinds of protocols we employ to- 
day, e.g., the need for acknowledgements and negotia- 
tion. Asymmetry, however, is frequently manifest in the 
bandwidth disparity associated with the forward and 
reverse communication channels. In a wireless setting, 
there are many situations in which asymmetric commu- 
nication is reasonable, e.g., in nomadic systems where 
differences in transmitter power of the base station and 
the mobile unit are very pronounced or in ad hoc net- 
works where the battery state may vary greatly among 
units in the field. Both transitive and non-transitive 
definitions of co-location make sense as well. For se- 
curity reasons, mobile hosts interacting with the same 
base station may not be considered to be co-located. At 
the same time, networks that support ad hoc routing 
may be viewed as fully connected clusters of co-located 
components. 

Finally, provisions for distant interactions may alter the 
picture even further either by annihilating space alto- 
gether or by forcing a clear differentiation among local 
and distant coordination mechanisms. Here again, we 
have an example in which the degree of novelty and the 
range of opportunities are most striking when we con- 
sider the interplay between coordination and space. 

3 T h e o r y  r e sea rch  
Theoretical studies tend to focus on essential traits of 
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broad classes of systems. This section explores possible 
definitions of mobile computing as a field of study and 
research by considering the range of models and algo- 
rithms that are beginning to be explored today. Models 
axe concerned with the formulation of proper abstrac- 
tions useful in specification and evaluation. They iden- 
tify fundamental concepts and relationships that pro- 
vide the elements of discourse for a particular scientific 
field and the basis for the development of analytical 
tools. As such, models provide valuable insights into 
how the field might evolve, what ideas are considered 
important, and what avenues remain unexplored. Al- 
gorithmic research centers on discovering difficult prob- 
lems that are frequently encountered during design and 
on formulating and analyzing basic solutions to such 
problems. Algorithms offer designers trusted solutions 
to fundamental problems and design strategies that can 
be readily adapted to new settings. Another important 
aspect of this kind of research is gaining an understand- 
ing of what is and what is not possible and at what cost. 
As seen in the remainder of this section, research on 
models and algorithms for mobility is only in its forma- 
tive stages, opening opportunities for fresh, new ideas. 

Mode l s  
In this section, we focus our attention on models that 
entail an explicit notion of space and components that 
move through it. A component may be either a code 
fragment that is given the ability to roam the address 
spaces of a computer network or a physical device mov- 
ing through the real world. Abstraction often blurs the 
distinction between logical and physical mobility thus 
allowing us to formally specify and reason about arbi- 
trary components moving across a broad range of con- 
ceivable spaces. By and large, models tend to subsume 
physical into logical mobility, as the latter exhibits char- 
acteristics that have no direct physical counterparts, 
e.g., the ability to spawn remotely a new mobile unit. 
As one might expect, models vary greatly in the way 
they answer questions such as who is allowed to move, 
where it can go, and how context changes caused by 
movement are managed. The choice of unit of mobility 
is central to any model of mobility since it shapes to a 
large extent the way in which the other two questions 
are addressed. The treatment of location is indicative of 
the model's perception of space. The handling of con- 
textual changes reflects the component's perception of 
the coordination mechanisms that tie components into 
a system. Ultimately, the assumptions and choices a 
model makes relative to these particular concerns dif- 
ferentiate it from other models of mobility. 

The unit of mobility represents the smallest component 
in the system that is allowed to move. A typical choice 
is to make the unit of mobility coincide with the unit 
of execution. This approach fits well a mobile device 

that moves in physical space as well as a mobile agent 
that migrates among network hosts. The vast majority 
of models share this choice, e.g., higher-order extensions 
of r-calculus [43], Ambients [9], and Mobile UNITY [27], 
to name only a few. However, the reality of middleware 
and applications for logical mobility suggests that  finer- 
grained units, weaker than full-fledged execution units, 
are pervasive in every day practice. Among various de- 
sign paradigms for code mobility [14], for instance, code 
on demand is probably the most widely used at this 
time. In this style of logical mobility, the unit of execu- 
tion does not actually move. Its behavior is dynamically 
augmented by foreign code that becomes linked when a 
particular trigger condition occurs. Evidently, this fine- 
grained perspective provides a new degree of freedom in 
describing how a distributed system gets reconfigured 
by exploiting mobility among its components. The unit 
of execution is no longer tied to a host and neither are 
the unit 's constituents tied to it. From this perspec- 
tive, the ability to move a unit of execution as a whole 
(commonly called a mobile agent) may be regarded as 
a special case of a more general framework in which 
single code fragments and/or their corresponding states 
can change location. Not surprisingly, this notion has a 
direct counterpart in physical mobility, where the alter 
ego of code and state are the applications and the data 
they use on some device. 

So far, despite its theoretical and practical relevance, 
fine-grained mobility received only limited attention in 
the formal models community. A commonly used ap- 
proach is to view the code and the state associated with 
an executing unit as degenerate cases of the unit, e.g., 
state may be carried by a unit in which the code is miss- 
ing or has no effect on the computation. Because code 
and state are not treated as first-class units of mobil- 
ity, this approach is not sufficiently expressive, e.g., it 
cannot capture code assemblies still under construction. 
To our knowledge, the only model that addresses fine- 
grained logical mobility explicitly is the one presented 
in [26]. In that work, this idea is pushed to an extreme 
by investigating a model where the unit of mobility is as 
small as a single variable or statement in a programming 
language. This radical perspective, readily encompass- 
ing more common situations where the unit of mobility 
is as coarse as a class or an object, is expected to provide 
new insights in the design of programming languages 
that foster high degrees of reconfigurability. 

Location identifies the position of a mobile unit in space. 
This view of location is tied to the intuitive notion 
of mobility and distinguishes models of interest to us 
in this paper from other highly dynamic models that 
equate mobility with a more general notion of change. 
In 7r-calculus [30], for instance, there is no notion of 
location built into the model, and yet the structure of 
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the system can change dynamically. Processes exchange 
communication channels (represented by names) and, 
in some extensions [43], even processes. This provides 
the expressive power needed to describe systems whose 
structure evolves but fails to treat location as a first 
class concept. It is important for a model to be ca- 
pable of dealing with location throughout the software 
development lifecycle, starting from the definition of the 
environment where mobility occurs, through designing 
and reasoning about a mobile application, and down to 
the tools provided to programmers. For this reason, nu- 
merous researchers are investigating calculi [9, 13, 33, 4] 
which extend 7r-calculus with some notion of location 
and also approaches that are not based on process alge- 
bras but on state transitions and logic [27]. 

The type of location is affected by the choice of unit of 
mobility. For instance, location could be represented by 
Cartesian coordinates for a mobile device, by a host ad- 
dress for a mobile agent, or by a process identifier in the 
case of a code fragment. For this reason, some models 
avoid specifying the details of location altogether and 
focus on how to effect movement and on how to detect 
and handle location changes and their consequences. 
This is precisely the case of Mobile UNITY [41], where 
location is modeled explicitly as a distinguished vari- 
able that belongs to the state of a mobile component. 
Changes in its value correspond to changes in the posi- 
tion of the component. Other models start with differ- 
ent assumptions and impose a predefined structure on 
the space (typically hierarchical). Such is the case with 
MobiS [25] where locations are nested spaces containing 
tuples, which in turn may contain code as well as data 
with migration taking place upwards in the hierarchy 
of spaces. Ambients [9] provides a richer model where 
locations are ambients containing processes or other am- 
bients. The boundary of an ambient, however, can be 
reconfigured dynamically to change the overall system 
structure. These latter approaches combine the notion 
of location, which only abstracts the notion of position 
in space, and the notion of context described below. 

Context represents the peculiar and novel aspect of mo- 
bile computing, to the point that  some researchers char- 
acterize mobility as "context-aware computing." The 
context of a mobile unit is determined by its current lo- 
cation which, in turn, defines the environment where the 
computation associated with the unit is performed. The 
context may include resources, services, as well as other 
components of the system. Conventional computing 
tends to foster a static notion of context, where changes 
are absent, small, or predictable. In a mobile setting, 
changes in location may lead to sudden changes in the 
context a unit perceives. Moreover, these changes are 
likely to be abrupt and unpredictable. A handheld wire- 
less device carried across the floors of an office building 

has access to different resources (e.g., printers or direc- 
tory information) on each floor; a mobile agent migrat- 
ing on different servers may use different sets of services 
on each of them; in a fine-grained model, a statement 
with free identifiers may be bound to different variable 
instances each time it is linked into a different unit of 
execution. 

Even though they are intimately related, location and 
context are fundamentally different notions. Two mo- 
bile units may be at the same location but perceive 
different contexts because they belong to different ad- 
ministrative domains. Similarly, two units may be at 
different locations and yet share the same context, e.g., 
two handheld devices in communication range. Fail- 
ing to discriminate between location and context can 
limit the expressive power of a model and can lead to 
missed opportunities. As shown in the remainder of 
this section, many open research issues in mobility are 
tied into the notion of context. In mobile computing, 
precise formulation of the notion of context and of the 
mechanisms for inducing and managing context changes 
are important chMlenges facing software engineering for- 
malists and practitioners alike. 

The context seen by each unit is determined by the kind 
of coordination mechanisms that are supported by the 
model. Coordination [24], as an area of research, investi- 
gates models and languages that  separate the specifica- 
tion of the behavior of the individual processes from the 
communication needed to coordinate such behaviors-- 
a goal shared by research on software architecture [45]. 
The kind of coordination-centered mentality we are pro- 
moting in this paper suggests that  one should specify 
how the unit of mobility interacts with its context sep- 
arately from the behavior of the unit itself. Many mod- 
els for coordination are based on the Linda model [15] 
which provides essentially a shared memory abstraction, 
a globally shared tuple space that defines a fixed con- 
text for the entire application. The result is a style of 
communication that is decoupled and implicit. These 
features are particularly desirable in the mobile setting, 
where mobile units are frequently changing context and 
do not necessarily know which partners are present at 
any given time. Tuple spaces may reside on servers and 
be accessible as long as connectivity exists but they may 
also be partitioned among the units of an ad hoc net- 
work and recombined whenever units are in contact with 
each other as in the case of LIME [38]. Other forms 
of transparent, transient and transitive sharing of data 
have been investigated in Mobile UNITY for use in ad 
hoc applications while mobile agent systems define bind- 
ing rules that allow agents to interface with resources on 
the current server. In general, transparent coordination 
mechanisms may be desirable because of their ability 
to accommodate the design of open systems. An im- 
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portant  question here is which model is most likely to 
increase software productivity and dependability in the 
next generation of mobile systems. 

One aspect of coordination involves the ability to de- 
termine who else is around. Even though fully trans- 
parent communication, £ la Linda, promises to simplify 
the programming effort, there are applications that  re- 
quire explicit knowledge of the participants in the com- 
putation. This information may also be useful for per- 
formance optimization purposes. Furthermore, mod- 
els that  aspire to broad applicability must be able to 
express both high level coordination constructs made 
available to the application programmer (e.g., transpar- 
ent variable sharing) as well as low level coordination 
constructs relating to system programming. These is- 
sues are well-known in distributed computing, and gave 
rise to a variety of naming and lookup schemes, includ- 
ing brokering and trading. However, mobility poses 
some novel challenges. First, the information about 
the components defining some unit 's context varies with 
high frequency. Second, many of the naming schemes 
devised so far, distributed as they may be, assume close 
coupling between name repositories, e.g., in the Inter- 
net 's Domain Name Service. This is impractical in logi- 
cal mobility, where mobile agents are exploited in order 
to provide disconnected operation, and almost impossi- 
ble in physical mobility, where the fluidity of the net- 
work disallows any assumptions about the availability 
of nodes. In the end, models of mobility are likely to 
include naming schemes, discovery capabilities, and reg- 
istries and they will need to cope with inconsistent views 
among units. 

The ability to detect whether the context has changed, 
e.g., whether a given unit is now part  of the context, 
is often a precondition for the ability to react to such a 
change. Timely reaction is often a requirement, because 
some actions may be enabled for a limited time after an 
event occurs (e.g., after two mobile agents become co- 
located, or after the noise level on a wireless link goes 
beyond a given threshold). Letting the component in- 
terested in handling an event probe for its occurrence 
proactively may not be acceptable, due to the poten- 
tially high number of conditions to be verified and of 
parties involved. Instead, a reactive approach may be 
more appropriate, allowing the interested component to 
provide a specification of the event condition and of the 
actions that  should handle of it. The portion of con- 
text considered for evaluating the enabling condition 
and the degree of reactivity (i.e., the degree of atomic- 
ity of the reaction with respect to the event occurrence) 
is what discriminates among these models. At one ex- 
treme, event-based systems [42, 11] consider only the 
o c c u r r e n c e  of events that  are filtered through a given 
specification. The corresponding reaction is guaranteed 

to execute eventually. At the other extreme, there are 
models [38] where the enabling condition is a particular 
s t a t e  of the system (i.e., of the context), and the re- 
action to a state change is completed before any other 
state change is performed. The question about what 
degree of atomicity and style of reaction is more rea- 
sonable for mobility is still an open one in the research 
community. 

Another issue related to the context-aware style of com- 
puting fostered by mobility is how aware should a com- 
ponent be of what is around and how much should it 
tell others about itself. This brings up the issue of secu- 
rity. Mobile devices should not be able to access services 
their owners are not entitled to and, similarly, program 
fragments should not misuse the resources available in 
the current context. Research on security has focused 
mostly on models that  allow representation and reason- 
ing about security protocols [2]. The real challenge is to 
identify proper tradeoffs between expressive power and 
security concerns, to investigate them formally, and to 
achieve the ability to prove immunity to attacks as sug- 
gested in Volpano et al. [48]. Interestingly, the notion 
of reactivity discussed above may help in devising secu- 
rity mechanisms that  are decoupled from the abstrac- 
tions they protect, and yet can filter out undesired state 
changes by executing compensatory reactions. 

The manner in which we deal with the context is greatly 
affected by whether it is distributed or localized. In 
logical mobility, for instance, the context is typically 
localized within the boundary of a host. A code frag- 
ment is moved onto a different host in order to exploit 
some resource or service provided locally. Network com- 
munication is exploited only during the migration pro- 
cess. In contrast, physical mobility seems to require a 
distributed notion of context. Mobile hosts construct 
the context through wireless communication and the 
resources and services that  contribute to defining the 
context are provided by the other components and are 
accessed in a distributed fashion. While it might be 
reasonable to look at both logical and physical mobility 
under the same modeling lens, their nature is intrinsi- 
cally different. The extent to which it is reasonable to 
t reat  both forms of mobility as one remains an open 
question that  demands careful consideration. Where is 
the threshold separating the realm of logical mobility 
from the one of physical mobility? 

The extent to which a model is implementable is de- 
termined by the kinds of constructs it provides and the 
target environment for the implementation effort. For 
instance, a model providing strong atomicity guarantees 
(e.g., a notion of transaction) can be implemented easily 
for logical mobility, if the context of the computation is 
localized to the node that  is hosting the migrating code. 
Trying to provide the same guarantees in the realm of 
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physical mobility may not even be possible. The impos- 
sibility of distributed consensus sets the limit for the 
guarantees that can be provided. Moreover, communi- 
cation failures are no longer temporary and relatively 
rare as it is assumed in distributed computing mod- 
els. Disconnection may last for long periods of time. In 
some mobile cases (e.g., low density ad hoc networks) 
two parties that have been in contact once may never 
be in range again. Disconnection is frequent and occurs 
both due to the lower reliability of the communication 
link, and due to explicit user actions, e.g., the desire to 
save battery power. Faults cannot be ignored and can- 
not be pushed outside the model as an implementation 
issue. 

In this light, one may consider two kinds of mobility 
scenarios. In one case, the specifics of the environment 
in which the host operates is carefully factored into the 
choice of constructs which are tailored for that particu- 
lax setting. For instance, transactions with strong atom- 
icity guarantees may still be appropriate in a scenario 
where hosts are allowed to disconnect only voluntarily 
(e.g., in an ad hoc network constituted by a group of co- 
workers meeting in the hall of a hotel while on travel), 
or where hosts move always as a cluster (e.g., a group 
of robots). The other option is to provide a rich set of 
constructs, some of which may turn out not to be ap- 
propriate in a particular setting and to rely on schemes 
that restrict the generality of the model in a particu- 
lar setting. In this manner a model provides a range of 
atomicity guarantees and associated costs. It becomes 
the responsibility of the designer to exercise proper dis- 
cipline over the usage of the model in a specific setting. 
In this manner the number of hosts, frequency and pat- 
terns of movement, power and noise constraints may be 
factored into the way the model is employed. These is- 
sues, typically not considered in models of computation, 
are central to a full understanding of mobility and they 
must receive proper consideration. 

Formal models enable precise description of the seman- 
tics of existing languages and systems and formal rea- 
soning about their correctness. In the novel field of mo- 
bility, models appear to assume an increased level of sig- 
nificance. Models must be used as intellectual tools to 
uncover the conceptual grounds of mobility and, armed 
with the power of abstraction, highlight parMlels and 
differences among the various forms of mobility as well 
as conventional distributed computing. Mobility may 
even throw a different light on the role of reasoning and 
correctness proofs. Reasoning about locations could be 
exploited not only to determine the correctness of a sys- 
tem, but also to optimize its configuration. For instance, 
by analyzing formally the patterns of migration of a 
group of mobile agents, proper placement of code could 
be determined in advance in order to minimize remote 

dynamic linking. 

In the past the impact of models was felt most directly 
through the development of new languages and associ- 
ated tools. This is no longer true today. Novel mobile 
applications with great intellectual and commercial suc- 
cess are likely to benefit much more from the develop- 
ment of appropriate middleware than from any advances 
in language technologies. As such, we see middleware 
as the conduit through which research on models for 
mobile computing will exercise its greatest influence of 
software engineering practice. 

Algorithms 
The algorithms we employ reflect the assumptions we 
make about the underlying systems. As the shift to 
mobile computing is taking place, it is natural to expect 
that  new algorithms would need to be developed. Lo- 
cation changes, frequent disconnections, resource vari- 
ability, power limitations, communication constraints, 
dynamic changes in the connectivity pattern, all con- 
tribute to a demand for new algorithm design strategies. 
Given the diversity of mobile systems, the range of op- 
tions is enormous and indeed research on mobile algo- 
rithms spans a broad spectrum. Some of the work, how- 
ever, reflects what one might consider short-term tech- 
nological limitations that will eventually be overcome or 
do not enjoy universal applicabilitzy. Power consumption 
falls in this category. Research on energy efficient algo- 
rithms is interesting but not necessarily fundamental. 
Even the concern with quality of service, particularly in 
multimedia applications, is probably not of the essence. 
Such research fits best in the category of system infras- 
tructure design rather than algorithms. Of course, some 
specific elements of these problem areas may survive the 
process of abstraction and make their way into funda- 
mental algorithms. For instance, algorithms involving 
asymmetric communication channels may end up being 
studied because it takes less power to listen to a signal 
than to broadcast it. Ultimately, it is the treatment of 
space and coordination again that shape the landscape 
of mobile algorithms. 

The ability of a mobile component to move through 
space requires new algorithms to control and manage 
information about its location and that of other com- 
ponents. Spatial knowledge is important in many ap- 
plications involving independent purposeful movement, 
cooperative activities, or involuntary movement. In set- 
tings where components have control over their own 
location, forming and maintaining geometrical shapes 
proves useful. For example in the task of robot explo- 
ration of an open field for unexploded ordnance [28], 
the ability to follow a leader through a known safe path 
is one useful application of a group movement strategy. 
Similarly, clustering around or encircling an object can 
be used to identify an object's boundaries, protect other 
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group members from danger, or protect the object itself. 
Both of these are examples of geometrical global invari- 
ants which have been specified and achieved by describ- 
ing algorithms to effect local, independent movements. 

Less specifically tied to geometry is the necessity in a 
sparse network to maintain connectivity among all com- 
ponents. Maximizing functions such as total  covered 
area or distance between the farthest components guide 
individual movements while keeping the group goals. 
In highly populated networks with possibly millions of 
nodes, connectivity is almost guaranteed, but organi- 
zation is critical. Hierarchical structures that  mimic 
the organization of the human body from cells into or- 
gans, and organs into a functioning whole offer imme- 
diate applications to scoping issues, communication ca- 
pability, and possible movement patterns [10]. While 
these examples tend to highlight opportunities in ad 
hoc mobility, nomadic computing and logical mobility 
also demand the ability to leverage off knowledge about 
component locations. This is usually accomplished by 
keeping track of where mobile units are located on loca- 
tion servers that  are queried for up to date information. 
Variations in the assumptions made about the number 
and placement of servers, and in update and query pro- 
cedures are likely to lead to a rich set of algorithmic 
studies of practical significance [40]. Other sources of 
potentially interesting algorithms may be the result of 
exploiting metrics over the space and relative distances. 
Distance information, for instance, is commonly utilized 
in route optimization. 

Other aspects of mobility entail more of a coordination 
perspective on algorithm development. Mobile compo- 
nents often work together to perform collective tasks 
which need to be monitored and controlled. Although 
many of these task oriented algorithms have been solved 
for traditional distributed computing, the reality of vol- 
untary disconnection of mobile components demands 
the redesign of these algorithms with mobility in mind. 
For example, a traditional distributed snapshot relies 
on the availability of communication between neighbor- 
ing nodes. In a mobile system, not only do neighbor 
sets change, but disconnections often prohibit commu- 
nication with some components for extended periods 
of time. Global checkpointing [3], causal event order- 
ing [39], leader election, and termination are other ex- 
amples of algorithms which are meaningful to mobile 
distributed processing and must be revisited to account 
for disconnections. Transactions involving mobile com- 
ponents must be reexamined to address the movement 
of components, location dependent queries, and data 
delivery to future locations [12]. 

In addition to coping with disconnection, algorithms 
must address the issue of mobile component interac- 
tions even in the presence of connectivity. For example, 

the ability for components to communicate via message 
passing can no longer be taken for granted because com- 
ponents can constantly change location making delivery 
difficult while still remaining connected. 

Strategies used in the development of algorithms for 
mobility vary widely. In the presence of a fixed sup- 
port infrastructure, the most common strategy is to 
push computation and communication away from the 
mobile components and wireless links and onto the in- 
frastructure [5]. For example, in the case of checkpoint- 
ing, while storage on physically mobile devices may be 
limited and even inaccessible due to disconnection, the 
state of the mobile components can be stored at a fixed 
node and communicated to other nodes along a fixed, 
higher bandwidth communication medium. 

When a network infrastructure does not exist or the 
network has no inherent structure of its own, an arti- 
ficial structure can be imposed over the components, 
grouping them for communication concerns or creating 
a hierarchy for management.  The ability to maintain 
and rely on this structure depends on the patterns of 
movement of the mobile components. Different situa- 
tions call for a variety of patterns ranging from general 
connectivity constraints such as eventual transitive com- 
munication between all pairs of components, to physical 
movement characteristics such as a predetermined path  
or direction of movement. These general patterns can 
be exploited by any fundamental algorithms. 

Other strategies t ry  to exploit the advantages of known 
algorithm design paradigms and re-adjust them for mo- 
bility. For example, randomized algorithms can be used 
to generate probabilistic results when component re- 
connection is uncertain. Alternately, if connectivity is 
guaranteed to be reestablished, disconnection may be 
viewed in a manner similar to a network fault. In this 
case, fault tolerant algorithms and self stabilizing tech- 
niques can be applied. Epidemic algorithms may prove 
to be the key to distributing information to components 
when connectivity is available. In logical and nomadic 
computing, traditional distributed algorithms can be ex- 
ploited for the purposes of mobility. For example, a dis- 
tr ibuted snapshot can be manipulated to provide uni- 
cast and multicast message delivery by treating the mo- 
bile units as messages and delivering a message rather 
than recording state [32]. After a similar transforma- 
tion, diffusing computations can be altered to track the 
movement of a mobile node through the network rather 
than to track the expansion of a distributed computing 
application [31]. 

The availability of a standard and well-understood set of 
algorithms, supported through formal models and mid- 
dleware, is a measure of the field's level of maturi ty but 
also an asset for the developer community. Experience 
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with distributed computing has shown that problems 
that may appear to be simple have very subtle solu- 
tions prone to error. This is likely to continue to be the 
case in the area of mobile computing. 

4 S y s t e m s  resea rch  
Within the research community there is a growing recog- 
nition of the fact that systems research can no longer 
focus almost exclusively on performance but must shift 
its attention towards the end-user requirements for de- 
pendability and ease of use [16]. This need is even more 
acute in the mobility field where the most visible im- 
pact of software engineering research will be in the wide 
range of applications expected to emerge on the market 
in the very near future. This suggests a need to con- 
sider a style of research that is much more application 
centered than in the past. In this section we first exam- 
ine the range of mobility applications currently under 
consideration and the application characteristics most 
likely to shape the kind of middleware that will be re- 
quired to make their development a success. 

Applications 
Current trends in computing technology include the 
manufacturing of increasingly smaller, more powerful, 
and more portable computing devices. A glance around 
any airport terminal shows that notebook computers are 
pervasive among business travelers. Common usage of 
these computers is for tasks that  require no interaction 
with outside resources, also referred to as disconnected 
operation. The Coda filesystem [22], for instance, sup- 
ports this by allowing users to specify a set of files to 
be hoarded on disconnection. On reconnection, any up- 
date conflicts within this set of files must be explicitly 
handled by the user. 

Another common task for mobile users is access to 
remote resources such as the Internet or company 
database systems. Recently 3Com released the Palm 
VII personal digital assistant with built in wireless ca- 
pabilities for accessing the Internet [1]. By simply rais- 
ing an external antenna, a connection is made to the 
nationwide private 3Com network. No wireless ether- 
net or cellular modem is necessary. Cellular telephones 
with limited Internet access are also becoming com- 
monplace. Although the user interface is limited by 
screen size and resolution, the ability to access infor- 
mation is key. To access a corporate database from a 
mobile device, Oracle provides support for three com- 
mon database operations [34]. First, users are able to 
manage a database remotely. Second, partial database 
replication allows mobile devices to carry a piece of the 
data and have constant access, possibly out of date with 
the original. Third, by using a mobile agent paradigm, 
mobile users can pose queries while disconnected, an 
agent collects these queries and when a connection is 
available to the database the agent moves to the server. 

The user can then disconnect while the queries are be- 
ing processed, and when the connection is reestablished, 
the agent moves back to the mobile host were the results 
are accessible. 

Smaller devices, such as active badges [49], provide sev- 
eral interesting application scenarios. If a badge is as- 
sociated with an individual, when that user moves to a 
new room, the environment in that room can automati- 
cally adjust to predefined user preferences. Alternately, 
badges can be attached to equipment and be used to lo- 
cate those objects as they are moved into different lab- 
oratories throughout an office complex. These systems 
rely on an infrastructure to track and make available 
such information. 

Another mobility scenario, different from the client- 
server model, describes a group of individuals coordi- 
nating on a project in an environment without network 
support. For example, laptops carried to a program 
committee meeting should be able to interact to con- 
struct a short-lived network during a plenary session 
or allow division into multiple independent networks to 
support individual working groups. Similarly, the par- 
ticipants in a conference may form an ad hoc group with 
the need to share information such as business cards, 
schedules, session notes, etc. 

Global positioning systems are becoming popular de- 
vices in many automobiles and, while the design of these 
devices does not require access to remote data, once 
wireless access becomes readily available, new kinds of 
applications may be considered. For example, cars mov- 
ing in opposite directions could share information about 
road conditions on recently traveled roads. Those mov- 
ing in the same direction may be able to coordinate for 
extended periods of time on a variety of tasks. Another 
interesting possibility is the placement of information 
kiosks at key places throughout a city or countryside. 
These kiosks could provide location specific information 
such as tourist information, available to the automobiles 
over a low power wireless link while themselves being 
connected to a fixed network. 

Specialized computing devices can contribute to the 
emergence of yet other interesting applications. In a 
teaching laboratory, multiple devices can coordinate to 
assist a student with an experiment by providing in- 
structions, performing computations, and collecting and 
displaying information from multiple instruments in a 
single place. At a smaller level weaving processors into 
clothing enables wearable computing, and thus a more 
natural way to carry and access computation power 
while moving. Tiny devices, such as those proposed 
by the Dust project [20], have potential as sensing de- 
vices spread throughout a room or desktop. Although 
some of these scenarios may appear to be the stuff of 
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science fiction, both society and technology are moving 
in this direction. Of course many technical challenges 
must be addressed before they become reality and they 
place new requirements on the middleware technology. 
Some of them are highlighted in the remainder of this 
section. 

One of the first concerns a developer must address is 
defining the user perception of the application with re- 
spect to the degree to which mobility is exposed at the 
application level. If  the user is location-aware, one must 
face the related question of how the user is made aware 
of this property. In a mobile filesystem such as Coda, 
the user explicitly specifies information to be hoarded 
on disconnection and explicitly resolves conflicts on re- 
connection. Alternately, when accessing location depen- 
dent information, such as a query for local resources in 
Odyssey [44], the user should be able to make a gener- 
alized query and have the system perform the specific 
resolution. In robot scenarios with autonomous move- 
ment, it may be reasonable to hide the absolute location 
and expose only relative positions among components, 
thus allowing each component to think of itself as the 
center of the universe. 

Variability in quality of service parameters is another 
factor that  may contribute to the user's perception of 
location and movement. As a user moves, possible band- 
width degradation requires some form of adaptation in 
the behavior of the application. Odyssey provides a nice 
illustration of this feature by allowing control over the 
fidelity of data  on the fly. In a video session, for ex- 
ample, frame rate and frame quality provide two tuning 
parameters. In general, applications must offer a variety 
of adaptive parameters that  affect the presentation style 
and make other adjustments reflecting different levels of 
knowledge about the overall configuration and available 
information. 

Similar situations are encountered when entering and 
leaving administrative domains especially when they 
have diverse levels of security. From the user perspec- 
tive, the amount of personal information to be shared 
must vary depending on context. The ability to express 
and alter both individual security policies and security 
demands of a domain is important to many mobile ap- 
plications. This ties in the issue of open environments 
in which applications on mobile components must be 
able to interact with other mobile components about 
which no prior knowledge exists and, similarly, with ap- 
plications never before encountered. While it is pos- 
sible to prohibit such interaction entirely, it is much 
more preferable to provide mechanisms that  are capa- 
ble of discovering beneficial modes of interaction in new 
circumstances. The ability to adapt  to an open envi- 
ronment must be weighed against the associated costs. 
Openness, for instance, may compromise security while 

excessive generality may require too many resources. 

Assessing the capabilities of the environment is also im- 
portant  for effective performance of an application. Mo- 
bile devices range from relatively high-power portable 
notebook computers to low-power personal digital as- 
sistants with limited display and computation; commu- 
nication capabilities may include powerful base stations 
enabling full connectivity among all mobile components 
or may be limited to ad hoc environments in which 
repartitioning and changes in connectivity pat tern are 
frequent. Finally, the speed and pat tern of movement 
can also exhibit great variability. This variety of en- 
vironmental conditions makes application development 
challenging, but the ability to accommodate  increases 
the potential degree of penetration by mobile applica- 
tions in the society at large. 

M i d d l e w a r e  
Middleware supports the software development task by 
enhancing the level of abstraction associated with the 
programming effort. Middleware adds mechanisms and 
services that  are much more specialized than those pro- 
vided by the operating system, within the context of 
established languages without modifying their syntax 
and semantics. Recent years have seen a flurry of mid- 
dleware developments for distributed systems. I t  is then 
reasonable to expect that  a new generation of middle- 
ware specialized for mobility will follow suit. Despite 
the similarities between logical and physical mobility, 
research on middleware tends to treat  the two forms of 
mobility very differently. Besides factors that  have to do 
with separation of the related research communities, a 
compelling reason for this situation rests with the differ- 
ent roles logical and physical mobility play with respect 
to application development. 

Logical mobility is essentially a new design tool for the 
developers of distributed applications. The ability to 
reconfigure dynamically the binding between hosts and 
application components provides additional flexibility 
and, under given conditions, improved bandwidth uti- 
lization. On the other hand, physical mobility poses new 
requirements for distributed applications, by defining a 
very challenging target execution environment. These 
different roles are mirrored in the characteristics of the 
corresponding middleware. Middleware for logical mo- 
bility is centered around new abstractions that  enable 
code and state relocation, whereas middleware for phys- 
ical mobility often tends to minimize differences with re- 
spect to non-mobile middleware, by relegating, as much 
as possible, the differences into the underlying runtime 
support. In the remainder of this section, we report 
about the state of the art in the field and highlight some 
of the open research issues. 

Traditionally, middleware for physical mobility has been 
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application centered. For instance, the Bayou [47] sys- 
tem provided the core functionality needed to build 
database applications that can handle disconnection 
through reconciliation and data hoarding. This ap- 
proach was symptomatic of an interpretation of mobile 
computing as a very specialized and rare form of com- 
puting that could be accommodated with application 
specific support and by exposing as little as possible of 
its characteristics to the user. Although this view may 
still hold true for many applications, with the rise of 
mobility as the base of future computing, general pur- 
pose middleware becomes more of a necessity. Hiding 
mobility becomes more difficult, if at all meaningful, 
and a new core of abstractions that extend distributed 
middleware with support for mobility must be devised. 

Following the concepts illustrated in Section 3, the unit 
of mobility we consider here is a mobile host. Finer 
grained mobility is conceivable but requires one to con- 
sider software and data residing on the host, a situa- 
tion that is the privy of logical mobility, a topic cov- 
ered later. In regard to physical mobility, the challenge 
for mobile middleware is to devise mechanisms and con- 
structs to allow detection of changes in location, to spec- 
ify what belongs to the context of the computation, to 
relate changes in location to context modifications, and 
to determine how the computation itself is affected by 
changes in the context. 

Many issues related to tracking the dynamics of loca- 
tion and context require tight interaction with the un- 
derlying operating system and device. Of particular sig- 
nificance is the availability of mechanisms that enable 
detection of connectivity, of variations in the quality of 
service of communication, of the appearance of new mo- 
bile hosts within communication range, and of battery 
power status. All these considerations are of paramount 
importance for the core of mobile applications and con- 
stitute a major point of departure from distributed com- 
puting, where the need for primitives that dig so deeply 
into the underlying machine is more the exception than 
the rule. For the time being, availability of such mecha- 
nisms and primitives is heavily constrained by the lack 
of appropriate programming interfaces at the underly- 
ing wireless device level. 

Similar constraints exist for detecting changes in the 
location of a mobile device. Location management is 
a novel and interesting requirement of mobile middle- 
ware, one that is likely to become more and more im- 
portant as experience with a wide range of truly mobile 
applications becomes available. Managing the location 
of a mobile host may assume many different nuances. 
It is desirable to have mechanisms that allow the pro- 
grammer to determine where the host currently is and 
to maintain a history of the visited locations. Further- 
more, it is natural to think about their integration with 

mechanisms that allow reactive modification of the con- 
text. It should be possible, for instance, to have loca- 
tion changes trigger specialized computations in order 
to reconcile data or to determine the role the mobile 
host must assume upon entering a new administrative 
domain. Location may be absolute or relative to that 
of other neighbors. In both cases, primitives are needed 
to define a notion of space and the associated notions 
of position and distance. It should be noted that rela- 
tive locations pose demanding requirements on location 
management, as they presuppose the ability to track 
continuously the movements of a given set of mobile 
hosts. In a world of autonomous mobile entities, track- 
ing services may become fundamental to enable cooper- 
ation when decoupled computation is not possible. 

A different set of issues that middleware for mobility 
must consider are actually well known in distributed 
computing, but need to be redefined in the new con- 
text. Service lookup belongs to this category. In dis- 
tributed computing, the problem of discovering avail- 
able services is often solved by forcing service providers 
to register with a server. In many popular architec- 
tures, e.g., Jini [29], the server is essentially central- 
ized and more sophisticated schemes that take into ac- 
count mobility being hand-coded on top of Jini. In- 
stead, mobility scenarios often require constructs that 
allow the programmer to perform service lookup with- 
out any knowledge about the configuration of the cur- 
rent context. LIME [38] is one system that  provides such 
capability. 

A well known alternative to centralized service discovery 
is the use of an event dispatching mechanism, which pro- 
vides also for reactive capabilities. Although most com- 
mercially available event dispatching systems are indeed 
centralized, there is a significant body of research on dis- 
tributed events growing both in industry and academia. 
Mobility complicates further the picture of dispatching 
events in a distributed fashion. Hierarchical configura- 
tions of dispatchers, like those proposed in [11], are no 
longer suitable when confronted with the fluid configu- 
ration of mobile hosts. Disconnection translates to the 
impossibility of delivering an event to a subscriber for a 
given time interval, thus raising the problem of how to 
reconcile the view of the subscriber upon reconnection. 
If events generated during disconnection are discarded, 
the subscriber may miss relevant events; if, on the other 
hand, events are queued and transmitted to the sub- 
scriber, the overhead of this bulk transmission may be 
prohibitive. Finally, delivering an event to a mobile unit 
may become a problem itself, even in presence of a fault- 
free network. Other issues that need to be revisited 
for mobility include mechanisms for security and access 
control, as well as support for transactions (which have 
been already discussed, although at a different level of 
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abstraction, in Section 3). 

Early approaches to logical mobility started out as what 
nowadays would be called middleware. For instance, 
the REV system [46] provided an extended version of 
remote procedure call where the client could specify the 
code of the procedure to be executed, and the Emer- 
ald [19] system provided an object-oriented layer on top 
of an operating system that  handled transparent object 
migration. By contrast, recent approaches to logical 
mobility focused initially on the design of new languages 
or on the extension of already existing languages with 
primitives expressly conceived for handling logical mo- 
bility. This is the case of Telescript [50] and Facile [23], 
among the others. The creation of a brand new language 
was justified by the absence, in traditional languages, 
of hooks into the runtime support to enable relocation 
of code and state. The fact that  today these systems, 
that  nevertheless influenced heavily subsequent develop- 
ments, are relegated to a totally marginal role is a symp- 
tom of the current trend dominated by systems based 
on the Java language. Java provides some of the run- 
time hooks, notably the ability to reprogram dynamic 
linking, combined with a degree of portability and se- 
curity that, although not optimal, is still higher than 
what many other platforms provide. 

However, current middleware for logical mobility is 
falling short of expectations. On one hand, there are 
mobile agent systems, i.e., systems providing as the 
main abstraction a unit of mobility coincident with the 
unit of execution. Despite the initial excitement about 
this notion of mobile agents, technology did not meet 
the expectations. Most existing systems provide basi- 
cally the same abstractions with the same limitations. 
In many respects, rather than building mobile agent 
systems as a facility that can interoperate with main- 
stream distributed middleware, many systems reimple- 
ment support mechanisms like events, dispatching, di- 
rectory services, transactions, messaging. This could 
be justified by the challenges logical mobility poses on 
the implementation of such services (very similar to 
those present in physical mobility). Yet, in many in- 
stances the tough problems are left unsolved and the 
mobility of agents is curtailed (impacting negatively on 
the very reason for the existence of mobile agent sys- 
tem). The key observation that logical mobility is just 
another design tool, and it should be made available 
to the programmer in combination, and not in alter- 
native, to distributed middleware is not acknowledged 
by these systems. Notable exceptions, representative 
of very different design strategies, are Voyager [21], a 
distributed middleware that provides object mobility as 
one of the many features of a full-fledged platform, and 
#CODE [37], a minimal, lightweight support for mobile 
code providing abstractions that enable the relocation 

of any mixture of code and state, thus encompassing 
also the notion of mobile agent. 

At the other extreme there are systems that exploit 
logical mobility by choosing a unit of mobility smaller 
than the unit of execution, typically the Java class. 
In contrast to the notion of mobile agent, this finer- 
grained logical mobility is finding its way into popular 
distributed middleware like Java/RMI and Jini [29]. In 
these systems, logical mobility is exploited for the sake 
of improved flexibility. While the benefits of static type 
checking are retained through the notion of a mutu- 
ally agreed service interface between client and server, 
the implementation of such service may be changed dy- 
namically by using subtyping and code mobility. The 
problem with this form of middleware, however, is that 
it exploits only a minimal fraction of the power pro- 
vided by logical mobility. Only the code on demand 
paradigm [14] is supported; other paradigms, like mo- 
bile agent or remote evaluation, that  have been proven 
useful [6], must be hand-coded. No relocation of state is 
allowed, except for the ability to copy the entire closure 
of an object that is being passed as a parameter of a 
remote invocation. 

Contrary to popular belief, building support for reloca- 
tion of code and state is not a monumental endeavor, 
especially using the Java language which already pro- 
vides many of the necessary building blocks. The real 
issue is the design of the constructs that are made avail- 
able to the programmer and their underlying conceptual 
model. Researchers have only begun to scratch the sur- 
face of discovering the level of flexibility provided by 
logical mobility. The next challenge is to provide sup- 
port for varying grains of mobility, mechanisms allowing 
different rebinding strategies, and different architectural 
styles for relocation--all in a single, uniform program- 
ming interface. 

In doing this, the position of Java as the supporting lan- 
guage for these efforts can be challenged. It has already 
been shown how it heavily constrains some choices re- 
lated to logical mobility. For instance, the lack of a 
mechanism in the Java virtual machine for saving and 
restoring the execution state of a thread complicates the 
implementation of systems supporting strong mobility. 
Similarly, the lack of a resource monitoring mechanism 
severely limits the development of systems that  provide 
mechanisms for security and accounting. Finally, the 
units of mobility supported by Java (i.e., classes and 
objects) and the related serialization mechanism may 
need modification, as they proved to be too coarse and 
heavyweight for many applications. 

Coordination, by abstracting away from the behavior of 
the mobile units and focusing on high level communica- 
tion protocols, may provide a way to rejoin the logical 

255 



and physical mobility in a single, uniform framework. 
In particular, systems based on tuple spaces provide a 
suitable and direct abstraction for an unstructured (and 
thus general) representation of the context where a mo- 
bile computation is performed. This way, coordination 
middleware does not impose specific data structures to 
represent the constituent of the context, instead, it pro- 
vides basic mechanisms that  rule the access, modifica- 
tion, and consistency of such data  structures. 

It  is interesting to note that  the advantages of coordinat- 
ing distributed components through a Linda-like model 
are well recognized also by the industry, where compa- 
nies like IBM and Sun compete with their Java-based 
implementations of a tuple space called TSpaces [17] 
and JavaSpaces [18], respectively. The two systems have 
slightly different implementations but a very similar phi- 
losophy. The degree of distribution is still extremely 
limited, as these systems essentially provide remote ac- 
cess to a centralized tuple space which acts as a tuple 
server providing shared access to clients. No support  for 
disconnection is provided, and the presence of a central- 
ized, well-known server almost instantly rules out appli- 
cability to an ad hoc network setting. Logical mobility 
is more of an hindrance than an asset for these systems, 
as downloading of tuplo code is not handled automat-  
ically. The Linda model is coupled with a primitive 
event system that  augments the expressive power, but 
its policies and guarantees are not easily adaptable by 
the user in need of specialized and reactive cooperating 
behavior. 

Some academic systems push further the coordination 
perspective by providing systems that  tie together Linda 
with mobility. For instance, the MARS and TuCSoN 
systems [8] provide the notion of a reactive tuple space. 
Changes in the tuple space content trigger reactions that  
modify the tuple space. This view of a reactive tuple 
space is common also to LIME [38], which combines it 
with a notion of transiently shared tuple space, designed 
to accommodate support  for dynamic reconfiguration of 
mobile agents and mobile hosts within the same pro- 
gramming interface. 

By and large, these coordination approaches tend to 
adopt a coarse grain perspective, providing support  for 
coordination of mobile agents and mobile hosts. Nev- 
ertheless, mobile code could be exploited as a means to 
modify dynamically the behavior of such mobile compo- 
nents, e.g., by employing schemes where tuples actually 
contain code, as in the MobiS model [25], and providing 
reactive rules for their dynamic linking and execution. 

Independently of the slant towards coordination, how- 
ever, middleware systems are ultimately generated 
through a design mindset and, as such, they are the 
result of compromises resulting from proper evaluation 

of tradeoffs. A first relevant tradeoff is about how much 
power should be put in the hands of the programmer. 
Middleware platforms nowadays tend to provide ex- 
tremely rich interfaces, i.e., powerful and expressive con- 
structs, at the cost of increased complexity, poor con- 
ceptual cohesion, and high performance overhead. The 
other tradeoff is between horizontal coverage for a broad 
range of scenarios and configurations (e.g., a platform 
providing abstractions that  span from the fixed to the 
ad hoc setting) in contrast with a vertical coverage of 
specific scenarios (e.g., providing support  only for palm- 
top devices in a nomadic setting). Identification of the 
proper balance between these opposing forces, combined 
with effective and validated support to real world appli- 
cations, is what will ultimately determine theemergence 
of a new generation of mobile middleware. 

5 C o n c l u s i o n s  
Advances in wireless technology, extensive investments 
in telephony, and the Internet 's  ability to provide ubiq- 
uitous access to information are the main forces that  
shaped the emergent field of mobile computing. Low 
level protocols, personal communication appliances, and 
web content delivery have been some of the most visible 
elements of this new computing arena. The success and 
popular acceptance of this technology is accompanied 
by rapid growth, increased demand for novel applica- 
tions, and high expectations with regard to quality and 
dependability. The t ime has come for the software en- 
gineering community to embrace mobile computing as 
the next frontier to be conquered. Across the entire 
spectrum of software engineering endeavors, mobility 
challenges old assumptions and demands new kinds of 
solutions. In this paper we sought to convey the intel- 
lectual excitement generated by research opportunities 
in mobile computing and to identify some of the main 
research issues the field is facing today. 
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