
Software Engineering for Mobility: A Roadmap
Gruia-Catalin Roman, Gian Pietro Picco & Amy Murphy

Key Research Pointers

Mobility challenges old assumptions and demands novel software engineering solutions
including new models, algorithms, and middleware.
Coordination mechanisms must be developed to bridge effectively a clean abstract model
of mobility and the technical opportunities and complexities of wireless technology,
device miniaturization, and code mobility.
Logical mobility opens up a broad range of new design opportunities, physical mobility
forces consideration of an entirely new set of technical constraints, and the integration of
the two is an important juncture in the evolution of software engineering as a field.
Key concepts shaping software engineering research on mobility are the choice of unit of
mobility, the definition of space and location, and the notion of context management.
Middleware is the most likely vehicle by which novel perspectives on mobility grounded in
clean formal models and effective technical solutions will make their way into industrial
practice.

The Authors

Gruia-Catalin Roman was a Fulbright Scholar at the University of Pennsylvania, in
Philadelphia, where he received a B.S. degree (1973), an M.S. degree (1974), and a
Ph.D. degree (1976), all in computer science. He has been on the faculty of the
Department of Computer Science at Washington University in Saint Louis since 1976.
Roman is a professor and chairman of the department. His current research involves
the study of formal models, design methods, and middleware for mobile computing
and the development of techniques for the visualization of distributed computations.
His previous research has been concerned with models of concurrency, declarative
visualization methods, design methodologies, systems requirements, interactive computer
vision algorithms, formal languages, biomedical simulation, computer graphics, and
distributed databases. Roman is also a software engineering consultant. His list of past
clients includes the government and firms in U.S.A. and Japan. His consulting work
involves development of custom software engineering methodologies and training
programs. Roman is a member of Tau Beta Pi, ACM, and IEEE Computer Society.

241

Gian Pietro Picco is an Assistant Professor at the Department of Electronics and
Information at Politecnico di Milano, Italy. Prior to this current appointment, he was a
Visiting Assistant Professor at Washington University in St. Louis, MO, USA. His research
interests are in distributed systems which exhibit mobility, both logical and physical.
His work in this area thus far has investigated several aspects spanning from theoretical
models to systems research, and has led to several publications, some of which are
widely referenced by the research community. More information can be found at
http://www.elet, polimi.it/- picco.

Amy L. Murphy received a B.S. in Computer Science from the University of Tulsa in
1995, and a M.S. from Washington University in St. Louis, Missouri in 1997 where
she is presently a doctoral student. Her research interests include the development of
standard algorithms for mobility and the design, specification, and implementation of
mobile middleware systems. These topics are integrated under the theme of enabling
the rapid development of dependable applications for both physically and logically
mobile environments. For more information, see http://www.cs.wustl.edu/-alm/.

242

Software Engineering for Mobility: A Roadmap
G r u i a - C a t a l i n R o m a n 1, G i a n P i e t r o P i c c o 2, A m y L. M u r p h y 1

1 D e p a r t m e n t of C o m p u t e r Sc ience

W a s h i n g t o n U n i v e r s i t y in St. Louis

C a m p u s Box 1045, O n e B r o o k i n g s Dr ive

St. Louis , M O 63130-4899, U S A

{roman, alm}@cs, wust i. edu

2Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano, Italy

picco@elet, polimi, it

A b s t r a c t
The term distributed computing conjures the image of
a fixed network structure whose nodes support the ex-
ecution of processes that communicate with each other
via messages traveling along links. Peer-to-peer commu-
nication is feasible but client-server relationships domi-
nate. More recently, servers have been augmented with
brokerage capabilities to facilitate discovery of avail-
able services. Stability is the ideal mode of operation;
changes are relatively slow; even in the case of failure,
nodes and links are expected eventually to come back
up. By contrast, mobility represents a total meltdown
of all the stability assumptions (explicit or implicit)
associated with distributed computing. The network
structure is no longer fixed, nodes may come and go,
processes may move among nodes, and even programs
(the code executed by processes) may evolve and change
structure. The challenges and opportunities associated
with this computational melee form the main subject of
this paper. We seek to sort out this chaotic form of com-
puting by focusing our attention on the formulation of
a simple framework for viewing mobility, on precise def-
inition of terms, and on research issues mobility poses
for the software engineering community.

1 I n t r o d u c t i o n
Software engineering focuses on the study of software ar-
tifacts, people as (imperfect) producers of software, and
processes as (approximate) guarantors of software qual-
ity. Yet, the best way to start understanding mobility is
to leave behind this software-centric perspective and to
ask a broader question: What is happening today with
computing in the societyat large? It is not at all difficult
to see that computing is drifting away from computers.
We have been trained to place software at the center
of the computing field and at the heart of the systems
we build. In reality, a strong centrifugal force is driving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Future of Sofware Engineering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

computing (along with its hardware and software struc-
tures) closer and closer towards the surrounding fabric
of the society, its infrastructures, its enterprises, and
its people. Increasingly, computing is being taken for
granted in the same manner that we ignore electricity,
the complexities of television broadcast technology, and
the presence of motors throughout automobiles t oday - -
they are there, somewhere, but we no longer think of
them. Commodity computers are likely to end up close
to our bodies and in our clothing. Smart sensors will
be found in elements of building structures or car parts.
The distinction between electronic and traditional en-
terprises is already blurred. A dynamic society pro-
motes and assimilates likewise computing structures. A
society on the move demands computing structures that
are mobile, malleable and available at any location. New
kinds of networking architectures are emerging.

In the traditional static network, fixed hosts with stati-
cally assigned (IP) addresses exchange messages via the
standard Internet infrastructure of fixed routers and
switches. At the periphery of this fixed network one
can envision base stations (fixed routers with wireless
communication capabilities) that control message traf-
fic to and from mobile hosts forming a dynamic fringe.
Some of them may have fixed addresses while others
may acquire temporary addresses as the need arises.
Ultimately, mobile hosts can detach themselves com-
pletely from the fixed infrastructure and may evolve in-
dependently of it. Such clouds are cMled mobile ad hoc
networks. They are opportunistically formed structures
that change rapidly in response to the movement of the
carriers to which the mobile hosts are attached. For the
time being, communication within ad hoc networks is
point to point over a physical broadcast medium, the
airwaves. However, growth in performance and capa-
bilities (e.g., new protocols) eventually will allow some
of the mobile units to start serving as mobile routers
for others in the area. Through transitivity, routing in
ad hoc networks will expand the connectivity pattern
beyond the limits of an immediately accessible region.

Across this highly dynamic physical structure a logi-
cal layer still more fluid is emerging. Code mobility

243

removes the static binding between the software com-
ponents of a distributed application and the network
hosts where they are executing. Relocation of such com-
ponents is then enabled, to achieve a higher degree of
flexibility and customizability, or improved bandwidth
utilization. More radical views encompass migration of
execution units which become regarded as mobile agents
autonomously performing tasks without requiring per-
manent connectivity towards the client. Although the
interest in code mobility is being popularized and am-
plified by the success of the Java language, the relevance
of mobile code is not only technological. This form of
logical mobility has the potential to completely change
the way distributed applications are conceived and de-
ployed, by raising the location of components to the
status of a first class design concept.

Sorting out the software engineering implications of this
intriguing and perplexing wave of technological changes
is a nontrivial task. Without any pretense of being com-
prehensive in its coverage, this paper identifies impor-
tant research areas and puts forth a conceptual frame-
work for thinking about mobility. In our view, space

and coord ina t ion are the two most critical dimensions
to be considered in any systematic t reatment of mobil-
ity. They provide the basis for drawing the distinction
between distributed and mobile computing and for dif-
ferentiating among various perspectives on mobile com-
puting.

The remainder of the paper is organized as follows. Sec-
tion 2 explores the notion that variations in the defini-
tion of space and in the choice of coordination mecha-
nisms can offer meaningful insights in the way different
systems treat mobility. Section 3 is concerned with the-
oretical aspects of software engineering. They include
formM models, which seek to uncover fundamentM prin-
ciples and essential features, and algorithms, which need
to be revisited in the context provided by mobility. Sec-
tion 4 is divided among applications and middleware.
Applications are important because it is ultimately the
end user that will determine the success and failure of
the various technologies. Middleware is the area likely
to see the greatest level of research activity as the de-
mand for rapid deployment of dependable new appli-
cations increases. Each subsection examines relevant
trends and identifies key research areas. Conclusions
appear in Section 5.

2 M o b i l e C o m p u t i n g
A world of abundant, untethered, portable (even wear-
able), and unobtrusive computers is made possible only
by the unique combination of two powerful trends: rapid
component miniaturization and the emergence of high-
speed wireless communication. As the number of com-
ponents per unit of space grows (eventually reaching
into the hundreds) running wires is no longer feasible.

The same is true when components are carried around
by human beings from one setting to another or when
they reside on moving platforms such as cars and air-
planes. Wireless communication (be it radio or infrared)
is the only viable link among mobile components which
aggregate together to form complex structures mostly
due to proximity and shared functionM needs or connect
seamlessly to the wireline networks as they change loca-
tion. The communication industry is actively pursuing
these opportunities by investing in new wireless tech-
nologies (e.g., wireless LAN speeds in excess of 10Mbps),
by cooperating in the establishment of interoperabil-
ity standards (e.g., IEEE 802.11b High Rate standard),
and by forming powerful consortia. The IETF Mobile
Ad Hoc Networks (Manet) Working Group is consider-
ing standardization efforts based on IP technology. The
list of consortia includes: 3G.IP which focuses on high
bandwidth wireless technology using W-CDMA; Blue-
tooth which uses frequency hopping and is designed to
provide low-cost support for small groups of co-located
devices; and others which promise home networks (via
a Shared Wireless Access Protocol or SWAP) or Web
page delivery to low-bandwidth devices (via a Wireless
Application Protocol or WAP).

Of course, wireless communication is not the same thing
as delivery of data to a mobile unit. The latter presup-
poses the ability to find the current location of the unit
and to continue to send data as the unit moves from
one place to another. Cellular phone systems accom-
plish this through a combination of broadcasts (to notify
the unit about the incoming call) and hand-off proto-
cols (to maintain the connection in the face of move-
ment). In the Internet setting, special protocols, such
as Mobile IP, have been designed to enable packet de-
livery while a mobile unit is away from its home base.
The next version of IP (IPv6) is" anticipated to pro-
vide still bet ter support for transparent packet delivery
to mobile units away from their home networks. Ef-
forts are also under way to respond to the special needs
of ad hoc networks. Rapidly changing topology ren-
ders impractical many well-established routing strate-
gies such as link-state and distance-vector. New vari-
ants are being proposed and evaluated. They include
Temporally Ordered Routing Algorithm (TORA) [35],
Dynamic Source Routing (DSR) [7], and Ad hoc On de-
mand Distance Vector (AODV) [36]. A common feature
among all three is their reactive nature, i.e., routing in-
formation is built in response to the demand to commu-
nicate among specific hosts. The provision of multicast
services is still another area receiving much attention in
the mobile setting.

Even though one might expect to see the concern with
mobility reach into the next layer of the computing host
architecture, the operating system, this does not seem

244

to be the case at this time. The communication sub-
strate, in general, continues to be tightly integrated in
the fabric of the operating system services without actu-
ally affecting its design in any significant way. Actually,
the impact of mobility on systems research and develop-
ment is manifest mostly at the language and middleware
levels. Languages are likely to continue to be dominated
by the concerns of code mobility. With the emergence
of Java and its well-integrated code-on-demand capabil-
ities, both mobile code languages (e.g., Obliq) and mo-
bile agent languages (e.g., Agent Tcl) are losing ground
even as mobility in all its forms is growing in signifi-
cance. Middleware is emerging as one of the most fertile
areas of systems research in mobility. This is, in part,
because specialized languages have lost favor with prac-
titioners and researchers alike. New languages require
too great an investment and entail unacceptable risks
while middleware can take advantage of the deployed
software infrastructure while providing clean high-level
programming abstractions in languages already avail-
able today. Middleware hides the protocol layer but
makes explicit the key concepts involved in the devel-
opment of mobile applications, e.g., the management
of location data, event notification, quality of service
assessment, adaptability, etc. Middleware can be spe-
cialized for logical or physical mobility or may combine
the two in a single cohesive package. Ultimately, re-
search on protocols, operating systems and languages
for mobility will not represent a major concern for the
software engineering community. It is the concern with
models, algorithms, applications and middleware that
will dominate software engineering research on mobility
in the decade to come.

From a software engineering perspective, we view mo-
bile computing to be the study of systems in which com-
putational components may change location. Suitable
locations are points in a space that may be continuous
or discrete. At a very coarse level, spaces can be of two
types: physical and logical. Physical mobility entails
the movement of mobile hosts in a building or even large
regions of the earth, i.e., a subset of the physical space
we occupy on the planet and beyond. Logical mobility
involves mobile units (of code and state) that migrate
among hosts. Typically, the hosts are stationary and
the mobility space reflects directly the structure of the
underlying network. It should be immediately apparent
that this simple distinction may be an accurate charac-
terization of past developments but that it is woefully
inadequate of current trends, which are likely to allow
for mobile units to migrate among both mobile and sta-
tionary hosts. This is why a careful characterization of
the mobility space and of the patterns of movement that
it permits is important.

Prevailing terminology in mobile computing is tied

to specific, albeit successful, types of applica-
tions/configurations that do not reflect the potential
richness of the field. In the case of physical mobility,
for instance, we often distinguish between nomadic com-
puting and ad hoc networks. The former is a term that
denotes systems consisting of a fixed core network and
a fringe of mobile hosts that connect to it via base sta-
tions. Here, space may be used to distinguish between
the cellular structure of the phone networks and the
kind of systems that rely on wireless LANs. Ad hoc
networks refers to systems consisting of mobile hosts
exclusively. Hosts are connected to each other when
they are within communication range. An individual
mobile host may or may not act as an ad hoc router
for the benefit of its neighbors. A more refined char-
acterization of such systems is needed. Moving along
train tracks, interacting within the confines of a single
room, and roaming across the sky lead to very different
classes of ad hoc networks. It is the definition of space
that can provide clean and useful formalizations of such
subclasses. In general, as the technology matures and
specialized applications emerge one should expect to see
mobility spaces with increasingly complex structures.
Movement in multidimensional spaces may turn out to
be a useful concept, e.g., administrative domains may
be viewed as another spatial dimension, orthogonal to
the geographic coordinate system.

Once we consider the notion that programs can move
through physical and logical spaces, it is only natural
to start wondering what happens when they meet. How
do they recognize each other as friends or foes? How
do they exchange information? How do they construct
complex cooperative behaviors? These and other simi-
lax questions are all about coordination. Coordination
is important in mobile computing because of the need
to decouple, both conceptually and pragmatically, the
t reatment of the individual components from the man-
ner in which they interact with each other. By focusing
on coordination one can limit the extent to which com-
ponents need to be aware of each other, especially when
one realizes that they may never know in advance with
whom and where interactions will take place. This is
because coordination brings about a world view that
is centered, metaphorically speaking, on the social dy-
namics rather than the individual personalities. If much
of the research on concurrency looked at components
(i.e., processes) from inside out, coordination seeks to
view components (i.e., mobile units) from outside in.
In one case we ask the question how shared variables
are accessed while in the other case we ponder about
how variables are shared. Coordination is concerned
primarily with the mechanisms (usually supplied by the
middleware or the operating system) needed to discover
who is around, to exchange information, to synchronize
actions, etc. This is why the manner in which mobile

245

components interact with each other becomes an impor-
tant differentiating feature among systems that support
mobility.

Let us consider, for instance, the problem of discover-
ing who else is there. One solution is to provide some
sort of known registry that can be interrogated, e.g.,
a name server. Another approach is to rely on pass-
ing around acquaintances, i.e., one becomes aware of
the presence of others through the grapevine. Broad-
cast may be used to announce one's presence, if there is
agreement on the broadcast protocol to be used. In all
cases, some a priori agreement is needed--often called
metalevel communication. In mobile computing, the
question becomes how to minimize such common knowl-
edge in order to maximize the open character of the sys-
tems we build. Message passing protocols traditionally
provided the standard interface among units when wire-
less communication is involved. Shared variables (or
objects) are frequently present in mobile agent systems.
Recently, shared tuple spaces, in a variety of forms, are
gaining in popularity. The trend towards more abstract
coordination mechanisms is a very positive development
because it holds the promise for facilitating rapid and
dependable development of mobile applications.

Another coordination concern, synchronization, may as-
sume a variety of forms, from the familiar to the ex-
otic. All types of statement synchronization may be
encountered in mobile systems. New forms of synchro-
nization involve the notion of location. For instance, a
group of robots may start congregating together due to a
predilection to migrate towards one another. Similarly,
components may seek to move as a group by preserv-
ing connectivity, i.e., by staying within communication
range. One can also envision diffused forms of synchro-
nization in which aggregate information is used to de-
cide on direction of movement. This would be the case
when components may be biased to migrate towards
areas of the space where a lot of communication is tak-
ing place or where the signal is stronger without actu-
ally making contact with any specific component in the
range. Of course, coordinated movement can be accom-
plished by taking advantage of the properties of space
and relative speeds. Two hosts moving along parallel
trajectories at constant speed will remain equidistant,
for instance.

Coordination mechanisms can also be classified as be-
ing explicit or implicit. The former happens when one
component refers to another for the purpose of sending
a message across. The latter form is encountered when
the underlying system makes the coordination transpar-
ent to the components involved. A change in context or
the arrival of an event may be the result of transparent
coordination activities perceived by the unit as sponta-
neous changes in the programming context. One par-

ticularly interesting mechanism for effecting a change in
context may be the result of code movement. The unit
may not be aware that any coordination took place, yet
its behavior may be altered dramatically. Variations in
the granularity of the code being shipped around de-
serve to be investigated as well.

Implicit in much of the discussion above is the notion
that coordination among mobile hosts or units takes
place whenever they are in touch with each other. How-
ever, the notion of being in touch entails careful analysis.
One may be tempted to assume that components can
coordinate with each other when they are co-located.
Two agents may arrive on the same server or two hosts
may find themselves in the same vicinity (on the same
wireless LAN). Unfortunately, such a view ignores con-
siderations having to do with security, administrative
domains, or quality of service. A weak radio link with
high error rates may need to be ignored; a good con-
nection that cannot deliver the desired bandwidth for
a multimedia application may not be of any use either.
The basic concept of co-location is right but its defini-
tion is complex. There is a need to Mlow for flexible
specification of the conditions under which co-location
actually permits coordination to take place.

Since co-location is a binary relation, it is natural to
raise the issue of whether the relation is symmetric
and/or transitive. For most researchers, communication
is two-way because the kinds of protocols we employ to-
day, e.g., the need for acknowledgements and negotia-
tion. Asymmetry, however, is frequently manifest in the
bandwidth disparity associated with the forward and
reverse communication channels. In a wireless setting,
there are many situations in which asymmetric commu-
nication is reasonable, e.g., in nomadic systems where
differences in transmitter power of the base station and
the mobile unit are very pronounced or in ad hoc net-
works where the battery state may vary greatly among
units in the field. Both transitive and non-transitive
definitions of co-location make sense as well. For se-
curity reasons, mobile hosts interacting with the same
base station may not be considered to be co-located. At
the same time, networks that support ad hoc routing
may be viewed as fully connected clusters of co-located
components.

Finally, provisions for distant interactions may alter the
picture even further either by annihilating space alto-
gether or by forcing a clear differentiation among local
and distant coordination mechanisms. Here again, we
have an example in which the degree of novelty and the
range of opportunities are most striking when we con-
sider the interplay between coordination and space.

3 T h e o r y r e sea rch
Theoretical studies tend to focus on essential traits of

246

broad classes of systems. This section explores possible
definitions of mobile computing as a field of study and
research by considering the range of models and algo-
rithms that are beginning to be explored today. Models
axe concerned with the formulation of proper abstrac-
tions useful in specification and evaluation. They iden-
tify fundamental concepts and relationships that pro-
vide the elements of discourse for a particular scientific
field and the basis for the development of analytical
tools. As such, models provide valuable insights into
how the field might evolve, what ideas are considered
important, and what avenues remain unexplored. Al-
gorithmic research centers on discovering difficult prob-
lems that are frequently encountered during design and
on formulating and analyzing basic solutions to such
problems. Algorithms offer designers trusted solutions
to fundamental problems and design strategies that can
be readily adapted to new settings. Another important
aspect of this kind of research is gaining an understand-
ing of what is and what is not possible and at what cost.
As seen in the remainder of this section, research on
models and algorithms for mobility is only in its forma-
tive stages, opening opportunities for fresh, new ideas.

Mode l s
In this section, we focus our attention on models that
entail an explicit notion of space and components that
move through it. A component may be either a code
fragment that is given the ability to roam the address
spaces of a computer network or a physical device mov-
ing through the real world. Abstraction often blurs the
distinction between logical and physical mobility thus
allowing us to formally specify and reason about arbi-
trary components moving across a broad range of con-
ceivable spaces. By and large, models tend to subsume
physical into logical mobility, as the latter exhibits char-
acteristics that have no direct physical counterparts,
e.g., the ability to spawn remotely a new mobile unit.
As one might expect, models vary greatly in the way
they answer questions such as who is allowed to move,
where it can go, and how context changes caused by
movement are managed. The choice of unit of mobility
is central to any model of mobility since it shapes to a
large extent the way in which the other two questions
are addressed. The treatment of location is indicative of
the model's perception of space. The handling of con-
textual changes reflects the component's perception of
the coordination mechanisms that tie components into
a system. Ultimately, the assumptions and choices a
model makes relative to these particular concerns dif-
ferentiate it from other models of mobility.

The unit of mobility represents the smallest component
in the system that is allowed to move. A typical choice
is to make the unit of mobility coincide with the unit
of execution. This approach fits well a mobile device

that moves in physical space as well as a mobile agent
that migrates among network hosts. The vast majority
of models share this choice, e.g., higher-order extensions
of r-calculus [43], Ambients [9], and Mobile UNITY [27],
to name only a few. However, the reality of middleware
and applications for logical mobility suggests that finer-
grained units, weaker than full-fledged execution units,
are pervasive in every day practice. Among various de-
sign paradigms for code mobility [14], for instance, code
on demand is probably the most widely used at this
time. In this style of logical mobility, the unit of execu-
tion does not actually move. Its behavior is dynamically
augmented by foreign code that becomes linked when a
particular trigger condition occurs. Evidently, this fine-
grained perspective provides a new degree of freedom in
describing how a distributed system gets reconfigured
by exploiting mobility among its components. The unit
of execution is no longer tied to a host and neither are
the unit 's constituents tied to it. From this perspec-
tive, the ability to move a unit of execution as a whole
(commonly called a mobile agent) may be regarded as
a special case of a more general framework in which
single code fragments and/or their corresponding states
can change location. Not surprisingly, this notion has a
direct counterpart in physical mobility, where the alter
ego of code and state are the applications and the data
they use on some device.

So far, despite its theoretical and practical relevance,
fine-grained mobility received only limited attention in
the formal models community. A commonly used ap-
proach is to view the code and the state associated with
an executing unit as degenerate cases of the unit, e.g.,
state may be carried by a unit in which the code is miss-
ing or has no effect on the computation. Because code
and state are not treated as first-class units of mobil-
ity, this approach is not sufficiently expressive, e.g., it
cannot capture code assemblies still under construction.
To our knowledge, the only model that addresses fine-
grained logical mobility explicitly is the one presented
in [26]. In that work, this idea is pushed to an extreme
by investigating a model where the unit of mobility is as
small as a single variable or statement in a programming
language. This radical perspective, readily encompass-
ing more common situations where the unit of mobility
is as coarse as a class or an object, is expected to provide
new insights in the design of programming languages
that foster high degrees of reconfigurability.

Location identifies the position of a mobile unit in space.
This view of location is tied to the intuitive notion
of mobility and distinguishes models of interest to us
in this paper from other highly dynamic models that
equate mobility with a more general notion of change.
In 7r-calculus [30], for instance, there is no notion of
location built into the model, and yet the structure of

247

the system can change dynamically. Processes exchange
communication channels (represented by names) and,
in some extensions [43], even processes. This provides
the expressive power needed to describe systems whose
structure evolves but fails to treat location as a first
class concept. It is important for a model to be ca-
pable of dealing with location throughout the software
development lifecycle, starting from the definition of the
environment where mobility occurs, through designing
and reasoning about a mobile application, and down to
the tools provided to programmers. For this reason, nu-
merous researchers are investigating calculi [9, 13, 33, 4]
which extend 7r-calculus with some notion of location
and also approaches that are not based on process alge-
bras but on state transitions and logic [27].

The type of location is affected by the choice of unit of
mobility. For instance, location could be represented by
Cartesian coordinates for a mobile device, by a host ad-
dress for a mobile agent, or by a process identifier in the
case of a code fragment. For this reason, some models
avoid specifying the details of location altogether and
focus on how to effect movement and on how to detect
and handle location changes and their consequences.
This is precisely the case of Mobile UNITY [41], where
location is modeled explicitly as a distinguished vari-
able that belongs to the state of a mobile component.
Changes in its value correspond to changes in the posi-
tion of the component. Other models start with differ-
ent assumptions and impose a predefined structure on
the space (typically hierarchical). Such is the case with
MobiS [25] where locations are nested spaces containing
tuples, which in turn may contain code as well as data
with migration taking place upwards in the hierarchy
of spaces. Ambients [9] provides a richer model where
locations are ambients containing processes or other am-
bients. The boundary of an ambient, however, can be
reconfigured dynamically to change the overall system
structure. These latter approaches combine the notion
of location, which only abstracts the notion of position
in space, and the notion of context described below.

Context represents the peculiar and novel aspect of mo-
bile computing, to the point that some researchers char-
acterize mobility as "context-aware computing." The
context of a mobile unit is determined by its current lo-
cation which, in turn, defines the environment where the
computation associated with the unit is performed. The
context may include resources, services, as well as other
components of the system. Conventional computing
tends to foster a static notion of context, where changes
are absent, small, or predictable. In a mobile setting,
changes in location may lead to sudden changes in the
context a unit perceives. Moreover, these changes are
likely to be abrupt and unpredictable. A handheld wire-
less device carried across the floors of an office building

has access to different resources (e.g., printers or direc-
tory information) on each floor; a mobile agent migrat-
ing on different servers may use different sets of services
on each of them; in a fine-grained model, a statement
with free identifiers may be bound to different variable
instances each time it is linked into a different unit of
execution.

Even though they are intimately related, location and
context are fundamentally different notions. Two mo-
bile units may be at the same location but perceive
different contexts because they belong to different ad-
ministrative domains. Similarly, two units may be at
different locations and yet share the same context, e.g.,
two handheld devices in communication range. Fail-
ing to discriminate between location and context can
limit the expressive power of a model and can lead to
missed opportunities. As shown in the remainder of
this section, many open research issues in mobility are
tied into the notion of context. In mobile computing,
precise formulation of the notion of context and of the
mechanisms for inducing and managing context changes
are important chMlenges facing software engineering for-
malists and practitioners alike.

The context seen by each unit is determined by the kind
of coordination mechanisms that are supported by the
model. Coordination [24], as an area of research, investi-
gates models and languages that separate the specifica-
tion of the behavior of the individual processes from the
communication needed to coordinate such behaviors--
a goal shared by research on software architecture [45].
The kind of coordination-centered mentality we are pro-
moting in this paper suggests that one should specify
how the unit of mobility interacts with its context sep-
arately from the behavior of the unit itself. Many mod-
els for coordination are based on the Linda model [15]
which provides essentially a shared memory abstraction,
a globally shared tuple space that defines a fixed con-
text for the entire application. The result is a style of
communication that is decoupled and implicit. These
features are particularly desirable in the mobile setting,
where mobile units are frequently changing context and
do not necessarily know which partners are present at
any given time. Tuple spaces may reside on servers and
be accessible as long as connectivity exists but they may
also be partitioned among the units of an ad hoc net-
work and recombined whenever units are in contact with
each other as in the case of LIME [38]. Other forms
of transparent, transient and transitive sharing of data
have been investigated in Mobile UNITY for use in ad
hoc applications while mobile agent systems define bind-
ing rules that allow agents to interface with resources on
the current server. In general, transparent coordination
mechanisms may be desirable because of their ability
to accommodate the design of open systems. An im-

248

portant question here is which model is most likely to
increase software productivity and dependability in the
next generation of mobile systems.

One aspect of coordination involves the ability to de-
termine who else is around. Even though fully trans-
parent communication, £ la Linda, promises to simplify
the programming effort, there are applications that re-
quire explicit knowledge of the participants in the com-
putation. This information may also be useful for per-
formance optimization purposes. Furthermore, mod-
els that aspire to broad applicability must be able to
express both high level coordination constructs made
available to the application programmer (e.g., transpar-
ent variable sharing) as well as low level coordination
constructs relating to system programming. These is-
sues are well-known in distributed computing, and gave
rise to a variety of naming and lookup schemes, includ-
ing brokering and trading. However, mobility poses
some novel challenges. First, the information about
the components defining some unit 's context varies with
high frequency. Second, many of the naming schemes
devised so far, distributed as they may be, assume close
coupling between name repositories, e.g., in the Inter-
net 's Domain Name Service. This is impractical in logi-
cal mobility, where mobile agents are exploited in order
to provide disconnected operation, and almost impossi-
ble in physical mobility, where the fluidity of the net-
work disallows any assumptions about the availability
of nodes. In the end, models of mobility are likely to
include naming schemes, discovery capabilities, and reg-
istries and they will need to cope with inconsistent views
among units.

The ability to detect whether the context has changed,
e.g., whether a given unit is now part of the context,
is often a precondition for the ability to react to such a
change. Timely reaction is often a requirement, because
some actions may be enabled for a limited time after an
event occurs (e.g., after two mobile agents become co-
located, or after the noise level on a wireless link goes
beyond a given threshold). Letting the component in-
terested in handling an event probe for its occurrence
proactively may not be acceptable, due to the poten-
tially high number of conditions to be verified and of
parties involved. Instead, a reactive approach may be
more appropriate, allowing the interested component to
provide a specification of the event condition and of the
actions that should handle of it. The portion of con-
text considered for evaluating the enabling condition
and the degree of reactivity (i.e., the degree of atomic-
ity of the reaction with respect to the event occurrence)
is what discriminates among these models. At one ex-
treme, event-based systems [42, 11] consider only the
o c c u r r e n c e of events that are filtered through a given
specification. The corresponding reaction is guaranteed

to execute eventually. At the other extreme, there are
models [38] where the enabling condition is a particular
s t a t e of the system (i.e., of the context), and the re-
action to a state change is completed before any other
state change is performed. The question about what
degree of atomicity and style of reaction is more rea-
sonable for mobility is still an open one in the research
community.

Another issue related to the context-aware style of com-
puting fostered by mobility is how aware should a com-
ponent be of what is around and how much should it
tell others about itself. This brings up the issue of secu-
rity. Mobile devices should not be able to access services
their owners are not entitled to and, similarly, program
fragments should not misuse the resources available in
the current context. Research on security has focused
mostly on models that allow representation and reason-
ing about security protocols [2]. The real challenge is to
identify proper tradeoffs between expressive power and
security concerns, to investigate them formally, and to
achieve the ability to prove immunity to attacks as sug-
gested in Volpano et al. [48]. Interestingly, the notion
of reactivity discussed above may help in devising secu-
rity mechanisms that are decoupled from the abstrac-
tions they protect, and yet can filter out undesired state
changes by executing compensatory reactions.

The manner in which we deal with the context is greatly
affected by whether it is distributed or localized. In
logical mobility, for instance, the context is typically
localized within the boundary of a host. A code frag-
ment is moved onto a different host in order to exploit
some resource or service provided locally. Network com-
munication is exploited only during the migration pro-
cess. In contrast, physical mobility seems to require a
distributed notion of context. Mobile hosts construct
the context through wireless communication and the
resources and services that contribute to defining the
context are provided by the other components and are
accessed in a distributed fashion. While it might be
reasonable to look at both logical and physical mobility
under the same modeling lens, their nature is intrinsi-
cally different. The extent to which it is reasonable to
t reat both forms of mobility as one remains an open
question that demands careful consideration. Where is
the threshold separating the realm of logical mobility
from the one of physical mobility?

The extent to which a model is implementable is de-
termined by the kinds of constructs it provides and the
target environment for the implementation effort. For
instance, a model providing strong atomicity guarantees
(e.g., a notion of transaction) can be implemented easily
for logical mobility, if the context of the computation is
localized to the node that is hosting the migrating code.
Trying to provide the same guarantees in the realm of

249

physical mobility may not even be possible. The impos-
sibility of distributed consensus sets the limit for the
guarantees that can be provided. Moreover, communi-
cation failures are no longer temporary and relatively
rare as it is assumed in distributed computing mod-
els. Disconnection may last for long periods of time. In
some mobile cases (e.g., low density ad hoc networks)
two parties that have been in contact once may never
be in range again. Disconnection is frequent and occurs
both due to the lower reliability of the communication
link, and due to explicit user actions, e.g., the desire to
save battery power. Faults cannot be ignored and can-
not be pushed outside the model as an implementation
issue.

In this light, one may consider two kinds of mobility
scenarios. In one case, the specifics of the environment
in which the host operates is carefully factored into the
choice of constructs which are tailored for that particu-
lax setting. For instance, transactions with strong atom-
icity guarantees may still be appropriate in a scenario
where hosts are allowed to disconnect only voluntarily
(e.g., in an ad hoc network constituted by a group of co-
workers meeting in the hall of a hotel while on travel),
or where hosts move always as a cluster (e.g., a group
of robots). The other option is to provide a rich set of
constructs, some of which may turn out not to be ap-
propriate in a particular setting and to rely on schemes
that restrict the generality of the model in a particu-
lar setting. In this manner a model provides a range of
atomicity guarantees and associated costs. It becomes
the responsibility of the designer to exercise proper dis-
cipline over the usage of the model in a specific setting.
In this manner the number of hosts, frequency and pat-
terns of movement, power and noise constraints may be
factored into the way the model is employed. These is-
sues, typically not considered in models of computation,
are central to a full understanding of mobility and they
must receive proper consideration.

Formal models enable precise description of the seman-
tics of existing languages and systems and formal rea-
soning about their correctness. In the novel field of mo-
bility, models appear to assume an increased level of sig-
nificance. Models must be used as intellectual tools to
uncover the conceptual grounds of mobility and, armed
with the power of abstraction, highlight parMlels and
differences among the various forms of mobility as well
as conventional distributed computing. Mobility may
even throw a different light on the role of reasoning and
correctness proofs. Reasoning about locations could be
exploited not only to determine the correctness of a sys-
tem, but also to optimize its configuration. For instance,
by analyzing formally the patterns of migration of a
group of mobile agents, proper placement of code could
be determined in advance in order to minimize remote

dynamic linking.

In the past the impact of models was felt most directly
through the development of new languages and associ-
ated tools. This is no longer true today. Novel mobile
applications with great intellectual and commercial suc-
cess are likely to benefit much more from the develop-
ment of appropriate middleware than from any advances
in language technologies. As such, we see middleware
as the conduit through which research on models for
mobile computing will exercise its greatest influence of
software engineering practice.

Algorithms
The algorithms we employ reflect the assumptions we
make about the underlying systems. As the shift to
mobile computing is taking place, it is natural to expect
that new algorithms would need to be developed. Lo-
cation changes, frequent disconnections, resource vari-
ability, power limitations, communication constraints,
dynamic changes in the connectivity pattern, all con-
tribute to a demand for new algorithm design strategies.
Given the diversity of mobile systems, the range of op-
tions is enormous and indeed research on mobile algo-
rithms spans a broad spectrum. Some of the work, how-
ever, reflects what one might consider short-term tech-
nological limitations that will eventually be overcome or
do not enjoy universal applicabilitzy. Power consumption
falls in this category. Research on energy efficient algo-
rithms is interesting but not necessarily fundamental.
Even the concern with quality of service, particularly in
multimedia applications, is probably not of the essence.
Such research fits best in the category of system infras-
tructure design rather than algorithms. Of course, some
specific elements of these problem areas may survive the
process of abstraction and make their way into funda-
mental algorithms. For instance, algorithms involving
asymmetric communication channels may end up being
studied because it takes less power to listen to a signal
than to broadcast it. Ultimately, it is the treatment of
space and coordination again that shape the landscape
of mobile algorithms.

The ability of a mobile component to move through
space requires new algorithms to control and manage
information about its location and that of other com-
ponents. Spatial knowledge is important in many ap-
plications involving independent purposeful movement,
cooperative activities, or involuntary movement. In set-
tings where components have control over their own
location, forming and maintaining geometrical shapes
proves useful. For example in the task of robot explo-
ration of an open field for unexploded ordnance [28],
the ability to follow a leader through a known safe path
is one useful application of a group movement strategy.
Similarly, clustering around or encircling an object can
be used to identify an object's boundaries, protect other

250

group members from danger, or protect the object itself.
Both of these are examples of geometrical global invari-
ants which have been specified and achieved by describ-
ing algorithms to effect local, independent movements.

Less specifically tied to geometry is the necessity in a
sparse network to maintain connectivity among all com-
ponents. Maximizing functions such as total covered
area or distance between the farthest components guide
individual movements while keeping the group goals.
In highly populated networks with possibly millions of
nodes, connectivity is almost guaranteed, but organi-
zation is critical. Hierarchical structures that mimic
the organization of the human body from cells into or-
gans, and organs into a functioning whole offer imme-
diate applications to scoping issues, communication ca-
pability, and possible movement patterns [10]. While
these examples tend to highlight opportunities in ad
hoc mobility, nomadic computing and logical mobility
also demand the ability to leverage off knowledge about
component locations. This is usually accomplished by
keeping track of where mobile units are located on loca-
tion servers that are queried for up to date information.
Variations in the assumptions made about the number
and placement of servers, and in update and query pro-
cedures are likely to lead to a rich set of algorithmic
studies of practical significance [40]. Other sources of
potentially interesting algorithms may be the result of
exploiting metrics over the space and relative distances.
Distance information, for instance, is commonly utilized
in route optimization.

Other aspects of mobility entail more of a coordination
perspective on algorithm development. Mobile compo-
nents often work together to perform collective tasks
which need to be monitored and controlled. Although
many of these task oriented algorithms have been solved
for traditional distributed computing, the reality of vol-
untary disconnection of mobile components demands
the redesign of these algorithms with mobility in mind.
For example, a traditional distributed snapshot relies
on the availability of communication between neighbor-
ing nodes. In a mobile system, not only do neighbor
sets change, but disconnections often prohibit commu-
nication with some components for extended periods
of time. Global checkpointing [3], causal event order-
ing [39], leader election, and termination are other ex-
amples of algorithms which are meaningful to mobile
distributed processing and must be revisited to account
for disconnections. Transactions involving mobile com-
ponents must be reexamined to address the movement
of components, location dependent queries, and data
delivery to future locations [12].

In addition to coping with disconnection, algorithms
must address the issue of mobile component interac-
tions even in the presence of connectivity. For example,

the ability for components to communicate via message
passing can no longer be taken for granted because com-
ponents can constantly change location making delivery
difficult while still remaining connected.

Strategies used in the development of algorithms for
mobility vary widely. In the presence of a fixed sup-
port infrastructure, the most common strategy is to
push computation and communication away from the
mobile components and wireless links and onto the in-
frastructure [5]. For example, in the case of checkpoint-
ing, while storage on physically mobile devices may be
limited and even inaccessible due to disconnection, the
state of the mobile components can be stored at a fixed
node and communicated to other nodes along a fixed,
higher bandwidth communication medium.

When a network infrastructure does not exist or the
network has no inherent structure of its own, an arti-
ficial structure can be imposed over the components,
grouping them for communication concerns or creating
a hierarchy for management. The ability to maintain
and rely on this structure depends on the patterns of
movement of the mobile components. Different situa-
tions call for a variety of patterns ranging from general
connectivity constraints such as eventual transitive com-
munication between all pairs of components, to physical
movement characteristics such as a predetermined path
or direction of movement. These general patterns can
be exploited by any fundamental algorithms.

Other strategies t ry to exploit the advantages of known
algorithm design paradigms and re-adjust them for mo-
bility. For example, randomized algorithms can be used
to generate probabilistic results when component re-
connection is uncertain. Alternately, if connectivity is
guaranteed to be reestablished, disconnection may be
viewed in a manner similar to a network fault. In this
case, fault tolerant algorithms and self stabilizing tech-
niques can be applied. Epidemic algorithms may prove
to be the key to distributing information to components
when connectivity is available. In logical and nomadic
computing, traditional distributed algorithms can be ex-
ploited for the purposes of mobility. For example, a dis-
tr ibuted snapshot can be manipulated to provide uni-
cast and multicast message delivery by treating the mo-
bile units as messages and delivering a message rather
than recording state [32]. After a similar transforma-
tion, diffusing computations can be altered to track the
movement of a mobile node through the network rather
than to track the expansion of a distributed computing
application [31].

The availability of a standard and well-understood set of
algorithms, supported through formal models and mid-
dleware, is a measure of the field's level of maturi ty but
also an asset for the developer community. Experience

251

with distributed computing has shown that problems
that may appear to be simple have very subtle solu-
tions prone to error. This is likely to continue to be the
case in the area of mobile computing.

4 S y s t e m s resea rch
Within the research community there is a growing recog-
nition of the fact that systems research can no longer
focus almost exclusively on performance but must shift
its attention towards the end-user requirements for de-
pendability and ease of use [16]. This need is even more
acute in the mobility field where the most visible im-
pact of software engineering research will be in the wide
range of applications expected to emerge on the market
in the very near future. This suggests a need to con-
sider a style of research that is much more application
centered than in the past. In this section we first exam-
ine the range of mobility applications currently under
consideration and the application characteristics most
likely to shape the kind of middleware that will be re-
quired to make their development a success.

Applications
Current trends in computing technology include the
manufacturing of increasingly smaller, more powerful,
and more portable computing devices. A glance around
any airport terminal shows that notebook computers are
pervasive among business travelers. Common usage of
these computers is for tasks that require no interaction
with outside resources, also referred to as disconnected
operation. The Coda filesystem [22], for instance, sup-
ports this by allowing users to specify a set of files to
be hoarded on disconnection. On reconnection, any up-
date conflicts within this set of files must be explicitly
handled by the user.

Another common task for mobile users is access to
remote resources such as the Internet or company
database systems. Recently 3Com released the Palm
VII personal digital assistant with built in wireless ca-
pabilities for accessing the Internet [1]. By simply rais-
ing an external antenna, a connection is made to the
nationwide private 3Com network. No wireless ether-
net or cellular modem is necessary. Cellular telephones
with limited Internet access are also becoming com-
monplace. Although the user interface is limited by
screen size and resolution, the ability to access infor-
mation is key. To access a corporate database from a
mobile device, Oracle provides support for three com-
mon database operations [34]. First, users are able to
manage a database remotely. Second, partial database
replication allows mobile devices to carry a piece of the
data and have constant access, possibly out of date with
the original. Third, by using a mobile agent paradigm,
mobile users can pose queries while disconnected, an
agent collects these queries and when a connection is
available to the database the agent moves to the server.

The user can then disconnect while the queries are be-
ing processed, and when the connection is reestablished,
the agent moves back to the mobile host were the results
are accessible.

Smaller devices, such as active badges [49], provide sev-
eral interesting application scenarios. If a badge is as-
sociated with an individual, when that user moves to a
new room, the environment in that room can automati-
cally adjust to predefined user preferences. Alternately,
badges can be attached to equipment and be used to lo-
cate those objects as they are moved into different lab-
oratories throughout an office complex. These systems
rely on an infrastructure to track and make available
such information.

Another mobility scenario, different from the client-
server model, describes a group of individuals coordi-
nating on a project in an environment without network
support. For example, laptops carried to a program
committee meeting should be able to interact to con-
struct a short-lived network during a plenary session
or allow division into multiple independent networks to
support individual working groups. Similarly, the par-
ticipants in a conference may form an ad hoc group with
the need to share information such as business cards,
schedules, session notes, etc.

Global positioning systems are becoming popular de-
vices in many automobiles and, while the design of these
devices does not require access to remote data, once
wireless access becomes readily available, new kinds of
applications may be considered. For example, cars mov-
ing in opposite directions could share information about
road conditions on recently traveled roads. Those mov-
ing in the same direction may be able to coordinate for
extended periods of time on a variety of tasks. Another
interesting possibility is the placement of information
kiosks at key places throughout a city or countryside.
These kiosks could provide location specific information
such as tourist information, available to the automobiles
over a low power wireless link while themselves being
connected to a fixed network.

Specialized computing devices can contribute to the
emergence of yet other interesting applications. In a
teaching laboratory, multiple devices can coordinate to
assist a student with an experiment by providing in-
structions, performing computations, and collecting and
displaying information from multiple instruments in a
single place. At a smaller level weaving processors into
clothing enables wearable computing, and thus a more
natural way to carry and access computation power
while moving. Tiny devices, such as those proposed
by the Dust project [20], have potential as sensing de-
vices spread throughout a room or desktop. Although
some of these scenarios may appear to be the stuff of

252

science fiction, both society and technology are moving
in this direction. Of course many technical challenges
must be addressed before they become reality and they
place new requirements on the middleware technology.
Some of them are highlighted in the remainder of this
section.

One of the first concerns a developer must address is
defining the user perception of the application with re-
spect to the degree to which mobility is exposed at the
application level. If the user is location-aware, one must
face the related question of how the user is made aware
of this property. In a mobile filesystem such as Coda,
the user explicitly specifies information to be hoarded
on disconnection and explicitly resolves conflicts on re-
connection. Alternately, when accessing location depen-
dent information, such as a query for local resources in
Odyssey [44], the user should be able to make a gener-
alized query and have the system perform the specific
resolution. In robot scenarios with autonomous move-
ment, it may be reasonable to hide the absolute location
and expose only relative positions among components,
thus allowing each component to think of itself as the
center of the universe.

Variability in quality of service parameters is another
factor that may contribute to the user's perception of
location and movement. As a user moves, possible band-
width degradation requires some form of adaptation in
the behavior of the application. Odyssey provides a nice
illustration of this feature by allowing control over the
fidelity of data on the fly. In a video session, for ex-
ample, frame rate and frame quality provide two tuning
parameters. In general, applications must offer a variety
of adaptive parameters that affect the presentation style
and make other adjustments reflecting different levels of
knowledge about the overall configuration and available
information.

Similar situations are encountered when entering and
leaving administrative domains especially when they
have diverse levels of security. From the user perspec-
tive, the amount of personal information to be shared
must vary depending on context. The ability to express
and alter both individual security policies and security
demands of a domain is important to many mobile ap-
plications. This ties in the issue of open environments
in which applications on mobile components must be
able to interact with other mobile components about
which no prior knowledge exists and, similarly, with ap-
plications never before encountered. While it is pos-
sible to prohibit such interaction entirely, it is much
more preferable to provide mechanisms that are capa-
ble of discovering beneficial modes of interaction in new
circumstances. The ability to adapt to an open envi-
ronment must be weighed against the associated costs.
Openness, for instance, may compromise security while

excessive generality may require too many resources.

Assessing the capabilities of the environment is also im-
portant for effective performance of an application. Mo-
bile devices range from relatively high-power portable
notebook computers to low-power personal digital as-
sistants with limited display and computation; commu-
nication capabilities may include powerful base stations
enabling full connectivity among all mobile components
or may be limited to ad hoc environments in which
repartitioning and changes in connectivity pat tern are
frequent. Finally, the speed and pat tern of movement
can also exhibit great variability. This variety of en-
vironmental conditions makes application development
challenging, but the ability to accommodate increases
the potential degree of penetration by mobile applica-
tions in the society at large.

M i d d l e w a r e
Middleware supports the software development task by
enhancing the level of abstraction associated with the
programming effort. Middleware adds mechanisms and
services that are much more specialized than those pro-
vided by the operating system, within the context of
established languages without modifying their syntax
and semantics. Recent years have seen a flurry of mid-
dleware developments for distributed systems. I t is then
reasonable to expect that a new generation of middle-
ware specialized for mobility will follow suit. Despite
the similarities between logical and physical mobility,
research on middleware tends to treat the two forms of
mobility very differently. Besides factors that have to do
with separation of the related research communities, a
compelling reason for this situation rests with the differ-
ent roles logical and physical mobility play with respect
to application development.

Logical mobility is essentially a new design tool for the
developers of distributed applications. The ability to
reconfigure dynamically the binding between hosts and
application components provides additional flexibility
and, under given conditions, improved bandwidth uti-
lization. On the other hand, physical mobility poses new
requirements for distributed applications, by defining a
very challenging target execution environment. These
different roles are mirrored in the characteristics of the
corresponding middleware. Middleware for logical mo-
bility is centered around new abstractions that enable
code and state relocation, whereas middleware for phys-
ical mobility often tends to minimize differences with re-
spect to non-mobile middleware, by relegating, as much
as possible, the differences into the underlying runtime
support. In the remainder of this section, we report
about the state of the art in the field and highlight some
of the open research issues.

Traditionally, middleware for physical mobility has been

253

application centered. For instance, the Bayou [47] sys-
tem provided the core functionality needed to build
database applications that can handle disconnection
through reconciliation and data hoarding. This ap-
proach was symptomatic of an interpretation of mobile
computing as a very specialized and rare form of com-
puting that could be accommodated with application
specific support and by exposing as little as possible of
its characteristics to the user. Although this view may
still hold true for many applications, with the rise of
mobility as the base of future computing, general pur-
pose middleware becomes more of a necessity. Hiding
mobility becomes more difficult, if at all meaningful,
and a new core of abstractions that extend distributed
middleware with support for mobility must be devised.

Following the concepts illustrated in Section 3, the unit
of mobility we consider here is a mobile host. Finer
grained mobility is conceivable but requires one to con-
sider software and data residing on the host, a situa-
tion that is the privy of logical mobility, a topic cov-
ered later. In regard to physical mobility, the challenge
for mobile middleware is to devise mechanisms and con-
structs to allow detection of changes in location, to spec-
ify what belongs to the context of the computation, to
relate changes in location to context modifications, and
to determine how the computation itself is affected by
changes in the context.

Many issues related to tracking the dynamics of loca-
tion and context require tight interaction with the un-
derlying operating system and device. Of particular sig-
nificance is the availability of mechanisms that enable
detection of connectivity, of variations in the quality of
service of communication, of the appearance of new mo-
bile hosts within communication range, and of battery
power status. All these considerations are of paramount
importance for the core of mobile applications and con-
stitute a major point of departure from distributed com-
puting, where the need for primitives that dig so deeply
into the underlying machine is more the exception than
the rule. For the time being, availability of such mecha-
nisms and primitives is heavily constrained by the lack
of appropriate programming interfaces at the underly-
ing wireless device level.

Similar constraints exist for detecting changes in the
location of a mobile device. Location management is
a novel and interesting requirement of mobile middle-
ware, one that is likely to become more and more im-
portant as experience with a wide range of truly mobile
applications becomes available. Managing the location
of a mobile host may assume many different nuances.
It is desirable to have mechanisms that allow the pro-
grammer to determine where the host currently is and
to maintain a history of the visited locations. Further-
more, it is natural to think about their integration with

mechanisms that allow reactive modification of the con-
text. It should be possible, for instance, to have loca-
tion changes trigger specialized computations in order
to reconcile data or to determine the role the mobile
host must assume upon entering a new administrative
domain. Location may be absolute or relative to that
of other neighbors. In both cases, primitives are needed
to define a notion of space and the associated notions
of position and distance. It should be noted that rela-
tive locations pose demanding requirements on location
management, as they presuppose the ability to track
continuously the movements of a given set of mobile
hosts. In a world of autonomous mobile entities, track-
ing services may become fundamental to enable cooper-
ation when decoupled computation is not possible.

A different set of issues that middleware for mobility
must consider are actually well known in distributed
computing, but need to be redefined in the new con-
text. Service lookup belongs to this category. In dis-
tributed computing, the problem of discovering avail-
able services is often solved by forcing service providers
to register with a server. In many popular architec-
tures, e.g., Jini [29], the server is essentially central-
ized and more sophisticated schemes that take into ac-
count mobility being hand-coded on top of Jini. In-
stead, mobility scenarios often require constructs that
allow the programmer to perform service lookup with-
out any knowledge about the configuration of the cur-
rent context. LIME [38] is one system that provides such
capability.

A well known alternative to centralized service discovery
is the use of an event dispatching mechanism, which pro-
vides also for reactive capabilities. Although most com-
mercially available event dispatching systems are indeed
centralized, there is a significant body of research on dis-
tributed events growing both in industry and academia.
Mobility complicates further the picture of dispatching
events in a distributed fashion. Hierarchical configura-
tions of dispatchers, like those proposed in [11], are no
longer suitable when confronted with the fluid configu-
ration of mobile hosts. Disconnection translates to the
impossibility of delivering an event to a subscriber for a
given time interval, thus raising the problem of how to
reconcile the view of the subscriber upon reconnection.
If events generated during disconnection are discarded,
the subscriber may miss relevant events; if, on the other
hand, events are queued and transmitted to the sub-
scriber, the overhead of this bulk transmission may be
prohibitive. Finally, delivering an event to a mobile unit
may become a problem itself, even in presence of a fault-
free network. Other issues that need to be revisited
for mobility include mechanisms for security and access
control, as well as support for transactions (which have
been already discussed, although at a different level of

254

abstraction, in Section 3).

Early approaches to logical mobility started out as what
nowadays would be called middleware. For instance,
the REV system [46] provided an extended version of
remote procedure call where the client could specify the
code of the procedure to be executed, and the Emer-
ald [19] system provided an object-oriented layer on top
of an operating system that handled transparent object
migration. By contrast, recent approaches to logical
mobility focused initially on the design of new languages
or on the extension of already existing languages with
primitives expressly conceived for handling logical mo-
bility. This is the case of Telescript [50] and Facile [23],
among the others. The creation of a brand new language
was justified by the absence, in traditional languages,
of hooks into the runtime support to enable relocation
of code and state. The fact that today these systems,
that nevertheless influenced heavily subsequent develop-
ments, are relegated to a totally marginal role is a symp-
tom of the current trend dominated by systems based
on the Java language. Java provides some of the run-
time hooks, notably the ability to reprogram dynamic
linking, combined with a degree of portability and se-
curity that, although not optimal, is still higher than
what many other platforms provide.

However, current middleware for logical mobility is
falling short of expectations. On one hand, there are
mobile agent systems, i.e., systems providing as the
main abstraction a unit of mobility coincident with the
unit of execution. Despite the initial excitement about
this notion of mobile agents, technology did not meet
the expectations. Most existing systems provide basi-
cally the same abstractions with the same limitations.
In many respects, rather than building mobile agent
systems as a facility that can interoperate with main-
stream distributed middleware, many systems reimple-
ment support mechanisms like events, dispatching, di-
rectory services, transactions, messaging. This could
be justified by the challenges logical mobility poses on
the implementation of such services (very similar to
those present in physical mobility). Yet, in many in-
stances the tough problems are left unsolved and the
mobility of agents is curtailed (impacting negatively on
the very reason for the existence of mobile agent sys-
tem). The key observation that logical mobility is just
another design tool, and it should be made available
to the programmer in combination, and not in alter-
native, to distributed middleware is not acknowledged
by these systems. Notable exceptions, representative
of very different design strategies, are Voyager [21], a
distributed middleware that provides object mobility as
one of the many features of a full-fledged platform, and
#CODE [37], a minimal, lightweight support for mobile
code providing abstractions that enable the relocation

of any mixture of code and state, thus encompassing
also the notion of mobile agent.

At the other extreme there are systems that exploit
logical mobility by choosing a unit of mobility smaller
than the unit of execution, typically the Java class.
In contrast to the notion of mobile agent, this finer-
grained logical mobility is finding its way into popular
distributed middleware like Java/RMI and Jini [29]. In
these systems, logical mobility is exploited for the sake
of improved flexibility. While the benefits of static type
checking are retained through the notion of a mutu-
ally agreed service interface between client and server,
the implementation of such service may be changed dy-
namically by using subtyping and code mobility. The
problem with this form of middleware, however, is that
it exploits only a minimal fraction of the power pro-
vided by logical mobility. Only the code on demand
paradigm [14] is supported; other paradigms, like mo-
bile agent or remote evaluation, that have been proven
useful [6], must be hand-coded. No relocation of state is
allowed, except for the ability to copy the entire closure
of an object that is being passed as a parameter of a
remote invocation.

Contrary to popular belief, building support for reloca-
tion of code and state is not a monumental endeavor,
especially using the Java language which already pro-
vides many of the necessary building blocks. The real
issue is the design of the constructs that are made avail-
able to the programmer and their underlying conceptual
model. Researchers have only begun to scratch the sur-
face of discovering the level of flexibility provided by
logical mobility. The next challenge is to provide sup-
port for varying grains of mobility, mechanisms allowing
different rebinding strategies, and different architectural
styles for relocation--all in a single, uniform program-
ming interface.

In doing this, the position of Java as the supporting lan-
guage for these efforts can be challenged. It has already
been shown how it heavily constrains some choices re-
lated to logical mobility. For instance, the lack of a
mechanism in the Java virtual machine for saving and
restoring the execution state of a thread complicates the
implementation of systems supporting strong mobility.
Similarly, the lack of a resource monitoring mechanism
severely limits the development of systems that provide
mechanisms for security and accounting. Finally, the
units of mobility supported by Java (i.e., classes and
objects) and the related serialization mechanism may
need modification, as they proved to be too coarse and
heavyweight for many applications.

Coordination, by abstracting away from the behavior of
the mobile units and focusing on high level communica-
tion protocols, may provide a way to rejoin the logical

255

and physical mobility in a single, uniform framework.
In particular, systems based on tuple spaces provide a
suitable and direct abstraction for an unstructured (and
thus general) representation of the context where a mo-
bile computation is performed. This way, coordination
middleware does not impose specific data structures to
represent the constituent of the context, instead, it pro-
vides basic mechanisms that rule the access, modifica-
tion, and consistency of such data structures.

It is interesting to note that the advantages of coordinat-
ing distributed components through a Linda-like model
are well recognized also by the industry, where compa-
nies like IBM and Sun compete with their Java-based
implementations of a tuple space called TSpaces [17]
and JavaSpaces [18], respectively. The two systems have
slightly different implementations but a very similar phi-
losophy. The degree of distribution is still extremely
limited, as these systems essentially provide remote ac-
cess to a centralized tuple space which acts as a tuple
server providing shared access to clients. No support for
disconnection is provided, and the presence of a central-
ized, well-known server almost instantly rules out appli-
cability to an ad hoc network setting. Logical mobility
is more of an hindrance than an asset for these systems,
as downloading of tuplo code is not handled automat-
ically. The Linda model is coupled with a primitive
event system that augments the expressive power, but
its policies and guarantees are not easily adaptable by
the user in need of specialized and reactive cooperating
behavior.

Some academic systems push further the coordination
perspective by providing systems that tie together Linda
with mobility. For instance, the MARS and TuCSoN
systems [8] provide the notion of a reactive tuple space.
Changes in the tuple space content trigger reactions that
modify the tuple space. This view of a reactive tuple
space is common also to LIME [38], which combines it
with a notion of transiently shared tuple space, designed
to accommodate support for dynamic reconfiguration of
mobile agents and mobile hosts within the same pro-
gramming interface.

By and large, these coordination approaches tend to
adopt a coarse grain perspective, providing support for
coordination of mobile agents and mobile hosts. Nev-
ertheless, mobile code could be exploited as a means to
modify dynamically the behavior of such mobile compo-
nents, e.g., by employing schemes where tuples actually
contain code, as in the MobiS model [25], and providing
reactive rules for their dynamic linking and execution.

Independently of the slant towards coordination, how-
ever, middleware systems are ultimately generated
through a design mindset and, as such, they are the
result of compromises resulting from proper evaluation

of tradeoffs. A first relevant tradeoff is about how much
power should be put in the hands of the programmer.
Middleware platforms nowadays tend to provide ex-
tremely rich interfaces, i.e., powerful and expressive con-
structs, at the cost of increased complexity, poor con-
ceptual cohesion, and high performance overhead. The
other tradeoff is between horizontal coverage for a broad
range of scenarios and configurations (e.g., a platform
providing abstractions that span from the fixed to the
ad hoc setting) in contrast with a vertical coverage of
specific scenarios (e.g., providing support only for palm-
top devices in a nomadic setting). Identification of the
proper balance between these opposing forces, combined
with effective and validated support to real world appli-
cations, is what will ultimately determine theemergence
of a new generation of mobile middleware.

5 C o n c l u s i o n s
Advances in wireless technology, extensive investments
in telephony, and the Internet 's ability to provide ubiq-
uitous access to information are the main forces that
shaped the emergent field of mobile computing. Low
level protocols, personal communication appliances, and
web content delivery have been some of the most visible
elements of this new computing arena. The success and
popular acceptance of this technology is accompanied
by rapid growth, increased demand for novel applica-
tions, and high expectations with regard to quality and
dependability. The t ime has come for the software en-
gineering community to embrace mobile computing as
the next frontier to be conquered. Across the entire
spectrum of software engineering endeavors, mobility
challenges old assumptions and demands new kinds of
solutions. In this paper we sought to convey the intel-
lectual excitement generated by research opportunities
in mobile computing and to identify some of the main
research issues the field is facing today.

R E F E R E N C E S

[1] 3Com. Palm VII Connected Organizer web page. h t t p :
//www. 3com. com/palm/palm_vi £/, 1999.

[2] M. Abadi and A.D. Gordon. A Calculus for Crypto-
graphic Protocols: The Spi Calculus. Information and
Computation, 148(1):1-70, January 1999.

[3] A. Acharya, B.R. Badrinath, and T. Imielinski. Check-
pointing Distributed Applications on Mobile Comput-
ers. In Proe. of the 3 ra Int. Conf. on Parallel and Dis-
tributed Information Systems, October 1994.

[4] R.. Amadio. An Asynchronous Model of Locality, Fail-
ure, and Process Mobility. In Proc. of the ~nd Int. Conf.
on Coordination Models and Languages (COORDINA-
TION '97), LNCS 1282. Springer, 1997.

[5] B.R. Badrinath, A. Acharya, and T. Imielinski. De-
signing Distributed Algorithms for Mobile Computing
Networks. Computer Communications, 19(4):309-320,
April 1996.

256

[6] M. Baldi and G.P. Picco. Evaluating the Tradeoffs of
Mobile Code Design Paradigms in Network Manage-
ment Applications. In Proc. of the 20 th Int. Conf. on
Software Engineering, 1998.

[7] J. Broch, D.B. Johnson, and D.A. Maltz. The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks
• Internet Draft, October 1999. IETF Mobile Ad Hoc
Networking Working Group•

[8] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive
Tuple Spaces for Mobile Agent Coordination• In Proc.
of the 2 ~d Int. Workshop on Mobile Agents, LNCS 1477.
Springer, 1998.

[9] L. Cardelli and A. Gordon• Mobile Ambients. Theoret-
ical Computer Science, 240(1), 2000• To appear•

[10] D. Coore, 1%. Nagpal, and R. Weiss. Paradigms for
Structure in an Amorphous Computer• A.I. Memo No.
1614, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, October 1997•

[11] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the de-
velopment of the OPSS WFMS. IEEE Trans. on Soft-
ware Engineering. To appear.

[12] M. Dunham, A. Helal, and S. Balakrsihnan. A Mo-
bile Transaction Model that Captures both the Data
and Movement Behavior. A CM-Baltzer Journal on Mo-
bile Networks and Applications (MONET), 2(2):149-
162, October 1997•

[13] C. Fournet, G. Gonthier, J.J. Levy, L. Maranget, and
D. Remy. A Calculus of Mobile Agents• In Proc. of
the 7 th Int. Conf. on Concurrency Theory (CONCUR),
LNCS 1119. Springer, 1996•

[14] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Trans. on Software Engineering,
24(5), 1998.

[15] D. Gelernter. Generative Communication in Linda.
ACM Computing Surveys, 7(1):80-112, Jan. 1985.

[16] J. Hennessy. The Future of Systems Research. Com-
puter, 32(8):27-33, August 1999.

[17] IBM. T Spaces web page• http://www.almaden.ibm.
com/cs/TSpaces/, 1999•

[18] JavaSpaces. The JavaSpaces Specification web
page. http ://www. sun. com/j ini/specs/j s- spec.
html, 1999•

[19] E. Jul, H• Levy, N. Hutchinson, and A. Black. Fine-
grained Mobility in the Emerald System. A CA/[Trans.
on Computer Systems, 6(2):109-133, February 1988.

[20] J•M. Kahn, R•H. Katz, and K.S.J• Pister. Mobile Net-
working for Smart Dust. In Proc. of the 5 th Annual
ACM/IEEE Int. Conf. on Mobile Computing and Net-
working, Seattle, WA, USA, August 1999. ACM.

[21] J. Kiniry and D. Zimmerman. A Hands-On Look at
Java Mobile Agents. IEEE Internet Computing, 1(4),
1997.

[22] J.J. Kistler and M. Satyanarayanan. Disconnected Op-
eration in the Coda File System. ACM Trans. on Com-
puter Systems, 10(1):3-25, 1992.

[23] F•C. Knabe. Language Support for Mobile Agents. PhD
thesis, Carnegie Mellon Univ., Pittsburgh, PA, USA,
December 1995.

[24] T.M. Malone and K. Crowston. The Interdisciplinary
Study of Coordination• ACM Computing Surveys,
26(1):8~119, March 1994.

[25] C. Mascolo. MobiS: A Specification Language for Mo-
bile Systems• In P. Ciancarini and A. Wolf, editors,
Proceedings of the 3 rd Int. Conf. on Coordination Lan-
guages and Models (COORDINATION), volume 1594
of LNCS, pages 37-52. Springer, April 1999.

[26] C. Mascolo, G.P. Picco, and G.-C. Roman. A Fine-
Grained Model for Code Mobility. In Proc. of the
~h European Software Engineering Conf. held jointly
with the 7 th ACM SIGSOFT Symp. on the Founda-
tions of Software Engineering (ESEC/FSE '99), LNCS,
Toulouse (France), September 1999. Springer.

[27] P.J. McCann and G.-C. Roman. Compositional Pro-
gramming Abstractions for Mobile Computing. IEEE
Trans. on Software Engineering, 24(2), 1998.

[28] J. McLurkin. Using Cooperative Robots for Explosive
Ordnance Disposal. Massachusetts Institute of Tech-
nology Artificial Intelligence Laboratory.

[29] Sun Microsystems. Jini web page. http:/ /www.sun.
com/j ini.

[30] R. Milner. Communicating and Mobile Systems: The
1r-Calculus. Cambridge University Press, 1999.

[31] A. Murphy, G.-C. Roman, and G. Varghese. Tracking
Mobile Units for Dependable Message Delivery. Techni-
ca/Report WUCS-99-30, Washington University, Dept.
of Computer Science, St. Louis, MO, USA, December
1999.

[32] A.L. Murphy and G.P. Picco. Reliable Communication
for Highly Mobile Agents• In Proc. of the 18t Int. Syrup.
on Agent Systems and Applications and ~rd Int• Symp.
on Mobile Agents (ASA/MA '99), pages 141-150, Palm
Springs, CA, USA, October 1999. IEEE Computer So-
ciety.

[33] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A
Kernel Language for Agents Interaction and Mobility.
IEEE Trans. on Software Engineering, 24(5), 1998.

[34] Oracle. Oracle 8i Lite web page. h t tp : / /www.oracle .
com/, 1999.

[35] V. Park and S. Corson. Temporally-Ordered Routing
Algorithm (TORA) Version 1 Functional Specification•
Internet Draft, October 1999. IETF Mobile Ad Hoc
Networking Working Group.

[36] C.E. Perkins, E.M. Royer, and S.R. Das. Ad Hoc On
Demand Distance Vector (AODV) Routing. Internet
Draft, October 1999. IETF Mobile Ad Hoc Networking
Working Group.

[37] G.P. Picco. ~CODE: A Lightweight and Flexible Mobile
Code Toolkit• In Proc. Of the 2 nd Int. Workshop on
Mobile Agents, LNCS 1477. Springer, 1998.

257

[38] G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME:
Linda Meets Mobility. In D. Garlan, editor, Proc. of
the 21 st Int. Conf. on Software Engineering, pages 368-
377, May 1999.

[39] R. Prakash, M. Raynal, and M. Singhal. An Adaptive
Causal Ordering Algorithm Suited to Mobile Comput-
ing Environments. Journal of Parallel and Distributed
Computing, pages 190-204, March 1997.

[40] R. Prakash and M. Singhal. A Dynamic Approach to
Location Management in Mobile Computing Systems.
In Proc. of the 8 ~h Int. Conf. on Software Engineering
and Knowledge Engineering (SEKE'96), pages 488-495,
June 1996.

[41] G.-C. Roman, P.J. McCann, and J.Y. Plun. Mobile
UNITY: Reasoning and specification in mobile comput-
ing. ACM Transactions on Software Engineering and
Methodology, 6(3):250-282, 1997.

[42] D.S. Rosenblum and A.L. Wolf. A Design Frame-
work for Internet-Scale Event Observation and Noti-
fication. In Proc. of the 6 th European Software En-
gineering Conf. held jointly with the 5 th A CM gIG-
SOFT Symp. on the Foundations of Software Engi-
neering (ESEC/FSE97), number 1301 in LNCS, Zurich
(Switzerland), September 1997. Springer.

[43] D. Sangiorgi. Expressing Mobility in Process Algebras:
First Order and Higher Order Paradigms. PhD thesis,
Computer Science Dept., Univ. of Edinburgh, 1993.

[44] M. Satyanarayanan. Mobile Information Access. IEEE
Personal Communications, 3(1), 1996.

[45] M. Shaw and D. Gaxlan. Software Architecture: Per-
spective on an Emerging Discipline. Prentice Hall, 1996.

[46] J.W. Stamos and D.K. Gifford. Remote Evaluation.
A CM Trans. on Programming Languages and Systems,
12(4):537-565, October 1990.

[47] D. Terry, M. Theimer, K. Petersen, A. Demers,
M. Spreitzer, and C. Hauser. Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Stor-
age System. Operating Systems Review, 29(5):172-183,
1995.

[48] D. Volpano. Provably-Secure Programming Languages
for Remote Evaluation. ACM Computing Surveys,
28A, December 1996. Participation statement for ACM
Workshop on Strategic Directions in Computing Re-
search.

[49] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The
Active Badge Location System. ACM Trans. on Infor-
mation Systems, 10(1):91-102, January 1992.

[50] J.E. White. Telescript Technology: Mobile Agents. In
J. Bradshaw, editor, Software Agents. AAAI Press/MIT
Press, 1996.

258

