

Trust Lifecycle Management in Ad-hoc Collaborations

Sotirios Terzis

<u>Sotirios.Terzis@cis.strath.ac.uk</u> University of Strathclyde

A Ubiquitous Computing Environment

www.smartlab.cis.strath.ac.uk

The characteristics of the environment

- A plethora of computational entities with a need for collaboration
- Significant variation in the supporting infrastructure
- A highly changeable set of potential collaborators

Ad-hoc collaborations become the norm

- Entities cannot rely on the availability of particular infrastructure
- Entities need to collaborate with little known or even unknown entities

Entities need to decided who to collaborate with

- Collaborations are unavoidable and can be dangerous
 - Collaborations may have both costs and benefits
- Decisions need to be taken autonomously and despite the lack of complete information about potential collaborators

Pervasive and Global Computing

CiS

Trust in Ad-hoc Collaborations (1)

www.smartlab.cis.strath.ac.uk

- The human notion of trust seems appealing as a basis for entity decision making
 - Despite the difficulty in defining trust, certain characteristics are apparent and appealing
 - Trust is subjective in nature disposition
 - Trust is situation specific
 - Trust evolves over time in the light of experience
 - Trust propagation is a desirable property
- The goal is to use trust as the mechanism for managing the dangers/risks of collaboration
 - Trust conveys information about likely behaviour
 - Virtual anonymity: identity conveys little information about likely behaviour
 - Entity recognition as a superset of authentication

Trust in Ad-hoc Collaborations (2)

www.smartlab.cis.strath.ac.uk

Entity recognition versus authentication

Authentication Process (AP) Entity Recognition (ER)		
、 <i>、 、 、</i>	Entity Recognition (ER)	
A.1. Enrollment: generally in-		
volves an administrator or human		
intervention		
A.2. Triggering: e.g. someone	E.1. Triggering (passive and ac-	
clicks on a Web link to a resource	tive sense): mainly triggering (as	
that requires authentication to be in A.2), with the idea that		
downloaded recognizing entity can trigger i		
	self	
A.3. Detective work: the main	E.2. Detective work: to recog-	
task is to verify that the princi-	nize the entity to-be recognized	
pal's claimed identity is the peer's	using the negotiated and available	
	recognition scheme(s)	
	E.3. Retention (optional):	
	"preservation of the after ef-	
	fects of experience and learning	
	that makes recall or recognition	
	possible" [30]	
A.4. Action: the identification is	E.4. Action (optional): the out-	
subsequently used in some ways.	come of the recognition is subse-	
Actually, the claim of the iden-	quently used in some ways (loop	
tity may be done in steps 2 or 3	to E.1)	
depending on the authentication		
solution (loop to A.2)		

Trust in Ad-hoc Collaborations (3)

www.smartlab.cis.strath.ac.uk

Credential-based versus evidence-based trust management

- Implicit view of trust as delegation of privileges to trusted entities
 - Avoid the issues of what trust is made of, how it is formed
 - Very restricted view of trust evolution certificate revocation
- Explicit view of trust as likely entity behaviour on the basis of the history of past interactions

Trust lifecycle management is key to a trust-based model for ad-hoc collaborations

- Need for explicit modelling of risk
- Need for a trust model supporting trust formation, evolution and propagation
- Need for a decision making process that relates the trust and risk models and incorporates entity recognition

The SECURE Collaboration Model (1)

www.smartlab.cis.strath.ac.uk

A trust model

- A trust domain with a trustworthiness and an information ordering
 - An "unknown" trust value representing lack of information
- A local trust policy that assigns trust to principals and may reference other principals

A risk model

- Trust mediated actions with a set of possible outcomes
- Each outcome with an associated cost/benefit
- Risk as the likelihood of an outcome occurring combined with its associated cost

The relationship between trust and risk

- Trust determines the likelihood of the outcomes
- Trustworthy principals make beneficial outcomes more likely
- Access right-based versus behaviour-based trust models

The SECURE Collaboration Model (2)

www.smartlab.cis.strath.ac.uk

- Collaboration decision making
 - Collaboration request → Entity recognition → Entity trust assignment →
 Collaboration risk assessment → Collaboration policy application →
 Decision

Trust evaluation

- The result of multiple interactions with the same entity
- Monitoring of collaboration \rightarrow Production of evidence about entity's behaviour \rightarrow Evidence processing \rightarrow Update entity's trust value

Risk evaluation

- The result of multiple instances of similar interactions with different entities
- Monitoring of collaborations → Production of evidence about outcome costs → Evidence processing → Update outcome costs/benefits

The SECURE Collaboration Model (3)

www.smartlab.cis.strath.ac.uk

Evidence of entities' past behaviour

- Direct evidence results from a personal interaction with an entity observations
 - Unquestionable in nature, treated as fact
- Indirect evidence results from entities communicating their experiences from personal interactions with a particular entity to other entities – recommendations (trust values)
 - Subjective in nature, its value depends on the source
 - Trust in the recommender & recommendation adjustment

Evidence processing

Evaluate evidence with respect to the current trust value \rightarrow Evolve the current trust value in accordance to the evidence evaluation

The SECURE Collaboration Model (4)

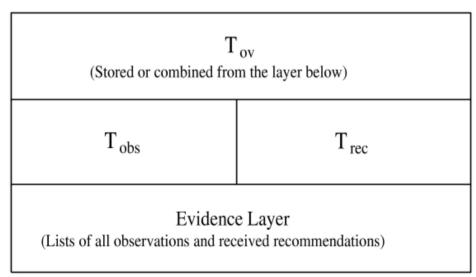
www.smartlab.cis.strath.ac.uk

Evidence evaluation in terms of Attraction

- Attraction is a measure of the effect evidence has to the current trust value
- The trust domain determines the direction of the attraction
 - In terms of trustworthiness can either be positive or negative
 - In terms of information can either be reinforcing or contradicting
- The risk domain determines the measure of the attraction
 - The more different the associated profiles of likely behaviour the stronger the attraction

Trust value evolution

- In the form of a trust evolution or trust update function
- Encodes dispositional characteristics: trusting disposition & trust dynamics


The SECURE Collaboration Model (5)

www.smartlab.cis.strath.ac.uk

Operational issues

- An architecture with the following component
 - Trust Lifecycle Manager
 - Collaboration Monitor
 - Evidence Gatherer
 - Evidence Store

Trust Information Structure

The SECURE Collaboration Model (6)

www.smartlab.cis.strath.ac.uk

The formation of trust

- The "unknown" trust value
 - We always have an initial trust value
- References in local trust policies
- Recommendations
 - When using recommendations formation is the same to evolution with "unknown" as the current trust value
 - Approaches to evidence gathering
 - Initial list of recommenders, authorisation hints, ask neighbours for good recommenders, recommender brokers, broadcast

Food for Thought

www.smartlab.cis.strath.ac.uk

Context as a situational modifier of trust

- Who and what are already elements of the decision making process
- Explicit modelling of relationships between contexts are crucial
- Different aspects of trust
 - Keep in mind the need for trust propagation

System trust

- Trust in the underlying infrastructure (e.g. recognition mechanism)
- Taking into account available (security) infrastructure

The role of the user

Introducing user into the trust loop

Trust and obscurity

- Security by obscurity should be avoided
- Openness of trust policies opens the possibility of trust scams

and Global Computing Pervasive

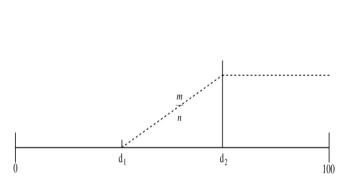
Final Word

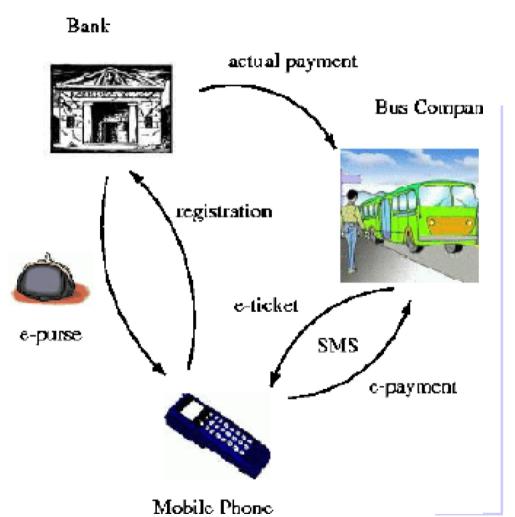
www.smartlab.cis.strath.ac.uk

SECURE Secure Environments for Collaboration among Ubiquitous Roaming Entities

SECURE is an EU FET project (IST-2001-32486) http://secure.dsg.cs.tcd.ie

 iTrust is an EU FET working group on Trust Management in Dynamic Open Systems (IST-2001-34810) <u>http://www.itrust.uoc.gr</u>




Pervasive and

The e-purse scenario (1)

www.smartlab.cis.strath.ac.uk

- The focus is on the bus company – passenger interaction
- The trust values are intervals (d1, d2)
- The risk analysis

The e-purse scenario (2)

www.smartlab.cis.strath.ac.uk

Trust evolution in the light of observations

- Observation validity of e-cash
- Observations adjust the boundaries of the intervals
 - Valid e-cash ⇒ positive attraction
 - Invalid e-cash \Rightarrow negative attraction
 - Expected outcome (i.e. probability > 50%) \Rightarrow reinforcing
 - Unexpected outcome \Rightarrow contradicting

attraction direction	direction of boundary movement	interval size
positive, reinforcing	\longrightarrow	$m_1 > m_2$
positive, contradicting	\longrightarrow	$m_1 < m_2$
negative, reinforcing		$m_1 > m_2$
negative, contradicting		$m_1 < m_2$

- If the amount of money is less than d1 and the e-cash is valid we don't really change the trust value
 - We consider the level of positive and negative adjustment as dispositional parameters