
Wireless Networks 10, 643–652, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Publish/Subscribe in a Mobile Environment

YONGQIANG HUANG ∗ and HECTOR GARCIA-MOLINA
Department of Computer Science, Stanford University, Stanford, CA 94305, USA

Abstract. A publish/subscribe system dynamically routes and delivers events from sources to interested users, and is an extremely useful
communication service when it is not clear in advance who needs what information. In this paper we discuss how a publish/subscribe system
can be extended to operate in a mobile environment, where events can be generated by moving sensors or users, and subscribers can request
delivery at handheld and/or mobile devices. We describe how the publish/subscribe system itself can be distributed across multiple (possibly
mobile) computers to distribute load, and how the system can be replicated to cope with failures, message loss, and disconnections.

Keywords: publish/subscribe, mobile networks, wireless ad-hoc networks, event systems

1. Introduction

A publish/subscribe system connects together information
providers and consumers by delivering events from sources
to interested users. A user expresses his/her interest in receiv-
ing certain types of events by submitting a predicate defined
on the event contents, called the user’s subscription. When a
new event is generated and published to the system, the pub-
lish/subscribe infrastructure is responsible for checking the
event against all current subscriptions and delivering it effi-
ciently and reliably to all users whose subscriptions match
the event.

The publish/subscribe communication paradigm differs
from traditional point-to-point models in a number of ways.
In publish/subscribe, communication is anonymous, inher-
ently asynchronous and multicasting in nature. The system is
able to quickly adapt in a dynamic environment. Anonymity
means that the communication partners are not required to
identify the party they want to talk to. For example, instead
of naming a publisher to receive events from, the subscriber
simply describes the characteristics of the events it wants to
receive. Publish/subscribe is also inherently asynchronous
because the sender (publisher) does not have to wait for an ac-
knowledgment from the recipient (subscriber) before moving
on. The reliable transmission of events to the subscribers is
taken care of by the infrastructure. Publish/subscribe resem-
bles multicast because it allows a publisher to send the same
event to many subscribers with only one publish operation.
Finally, the system can cope with a dynamically changing op-
erational environment where the publishers and subscribers
frequently connect and disconnect.

This combination of unique characteristics makes the pub-
lish/subscribe model well suited to a variety of application
areas, such as distributed information dissemination, finan-
cial analysis, alert systems and factory automation. In the
past decade many problems related to publish/subscribe have

∗ Corresponding author.
E-mail: yhuang@cs.stanford.edu

been tackled and solved, with some systems having reached
commercial maturity [24,28,30].

However, almost all of the research on publish/subscribe
systems so far has concentrated on publish/subscribe sys-
tems in a fixed network. We argue that publish/subscribe
systems are also advantageous in a mobile and/or wireless
environment [11]. The anonymity and dynamism of pub-
lish/subscribe allow the systems to adapt quickly to frequent
connections and disconnections of mobile nodes, characteris-
tic of a mobile network. Asynchrony is helpful because mo-
bile devices are often turned off or disconnected from the net-
work for long periods of time. Wireless devices have limited
capabilities and bandwidth. The multicasting nature of pub-
lish/subscribe helps a system scale to thousands of units.

With increasing popularity of mobile handheld devices,
there is a pressing need to extend publish/subscribe to a
mobile environment. As a sample application, in a mil-
itary battlefield, thousands of wireless and mobile sensors
such as satellites and equipment sensors report all kinds of
information ranging from the location of enemy troops to
whether the engine of a tank has overheated. There are also
many parties interested in receiving certain types of infor-
mation. An individual soldier may need to know the loca-
tion of the nearest enemy troops, or whenever a missile has
been fired. The above scenario requires the deployment of
a highly scalable and dynamic communication infrastructure,
for which a mobile publish/subscribe system is an ideal can-
didate.

In this paper, we briefly review a few publish/subscribe
models and discuss how they might be adapted to a mobile
environment. It is our hope that the issues we raise in this pa-
per will generate further exciting research, thereby giving this
new field of study the attention it deserves. After presenting
our framework (section 2), we start with the simplest model,
namely, the centralized approach (section 3). We then dis-
cuss distributed models that address the scalability problem
(section 4). Finally, we look at the use of replication and its
impact (section 5).



644 HUANG AND GARCIA-MOLINA

2. Framework

The first generation of publish/subscribe systems use either
group-based (also known as channel-based) or subject-based
(also known as topic-based) addressing. In the former [5,12,
21,27], a set of “groups” (or “channels”) are designated by
the system. Each event is published to one of these groups
by its publisher. A user subscribes to one or more groups,
and will receive all events published to the subscribed groups.
For example, in IP multicast [12], each group is identified by
a class D IP address. Subject-based systems [10,19,22,28]
are slightly more flexible. Each event is tagged with a short
“subject” (or “topic”) that describes its content. The subject is
either an arbitrary string or a string taken from an agreed-upon
domain. The subscriber defines its subscription in terms of
this subject line. In addition to an exact match, the subscriber
can also ask for all subjects beginning with the word “jobs”,
for example.

In recent years a more flexible paradigm called content-
based addressing has emerged. A content-based system gives
more flexibility and control to the subscriber by allowing
him/her to express his/her interest as an “arbitrary” query over
the contents of the events. Therefore, instead of relying on the
publisher to classify the events into groups or subjects, the
subscriber is now able to define sophisticated subscriptions
such as “give me all stock quotes for stock X issued between
time A and time B if the price is larger than 35”. A content-
based publish/subscribe system has also been called condition
monitoring systems or event notification/distribution/delivery
systems in various contexts.

However, the flexibility of content-based systems comes
at the expense of added challenges in design and implemen-
tation [7]. Intuitively, because the subscriptions can be com-
plex, figuring out matches between events and subscriptions
is a lot harder than in traditional group- or subject-based sys-
tems, where usually a simple table lookup is sufficient.

In this paper, we will assume a content-based system in
our discussions, because it is the more general and powerful
model. For instance, group- and subject-based systems can be
regarded as special cases of content-based systems where the
subscription syntax is restricted to simple tests on a specific
field of the event.

2.1. Basic model

Figure 1 illustrates the schematic of a basic publish/subscribe
system. It consists of one or more Event Sources (ES), an
Event Brokering System (EBS), and one or more Event Dis-
players (ED). An Event Source generates events in response
to changes to a real world variable that it monitors, such as
the location of an enemy tank. We assume that each event
is labeled with its source and a consecutive sequence num-
ber to facilitate our description. Other than that, we do not
make any assumptions about an event’s content. The events
are published to the Event Brokering System, which matches
them against a set of subscriptions, submitted by users in the
system. For example, a soldier could subscribe to receive

Figure 1. A content-based publish/subscribe system. The bubbles represent
filtering of events, and are labeled with the respective filtering criteria.

all events reporting the location of any tank within a certain
range. Note that, as the core of the publish/subscribe sys-
tem, the EBS could be implemented as either a single server
(Event Broker) or multiple distributed ones working together.
Additionally, an Event Broker can be replicated to increase
availability. Sections 4 and 5 discuss distributed and repli-
cated architectures and their mobile adaptations.

In figure 1, we use ci to denote the subscription criterion
of user i. In other words, user i wants all events and only
those events that satisfy ci . If a user’s subscription matches,
the event is forwarded to the Event Displayer associated with
that user. The presence of a bubble labeled ci in the link be-
tween the EBS and an ED implies that only events satisfying
ci passes through on this link. The Event Displayer is respon-
sible for alerting the user. In our example, the soldier will
be notified by a message on his/her mobile communication
device.

Note that some of the event services surveyed in this paper
may provide additional functionality such as event stream ma-
nipulation. For example, some systems can trigger on events
to generate new events. In this case, a subscription might look
like: “generate a buy order when the price of stock X has
climbed for more than 20 percent for three straight quotes”.
The ability to generate new events has been termed “content-
based with patterns” [8], “event stream interpretation” [4] and
“historical condition triggering” [17], among other things. In
this paper, we do not take into account any of the specific
system extensions such as this. Instead, we will focus on the
most fundamental functionality, namely, to route events from
their sources to their targets efficiently and reliably.

Although many systems do not adhere to the publish/sub-
scribe model exactly as defined here, they nonetheless share
a lot of the goals and challenges of pure publish/subscribe
systems. Recently, for example, data stream systems [2,6,15]
and sensor networks [13] have garnered attention in the re-
search community. The former filters and processes contin-
uous streams of data, while the latter coordinates large ar-
rays of (usually wireless) sensors. However, it is beyond the
scope of this paper to survey all relevant systems, and we in-
stead focus on extending the core event capabilities of pub-
lish/subscribe to mobile environments.



PUBLISH/SUBSCRIBE IN A MOBILE ENVIRONMENT 645

Figure 2. Centralized architecture: one server does all the matching and
filtering.

3. Centralized architectures

A centralized Event Brokering System consists of only one
Event Broker (figure 2). The central EB stores all currently
active subscriptions in the system. Every new event is pub-
lished to the EB, which is responsible for matching it against
all the subscriptions. Afterwards the event is forwarded to
all Event Displayers whose subscriptions match. Represen-
tative systems in this category include the SIFT Information
Dissemination System [32] and active databases [9].

An important problem that any centralized system would
need to address is how to efficiently match a new event against
a large set of subscriptions to figure out which ones match.
Although the matching problem is challenging and interest-
ing to study, it is beyond the scope of this paper. Interested
readers are referred to [1,9,14,32] for more detailed discus-
sions.

Even though the central EB may be a performance bottle-
neck and a single point of failure, it is important to under-
stand how it could operate in a mobile environment. In later
sections, we will look at how distribution alleviates the scala-
bility problem, and how replication helps with reliability.

3.1. Mobile adaptation

When adapting a centralized architecture to the mobile en-
vironment, we argue that, while the Event Sources and the
Event Displayers can reside on a mobile device, the central
Event Broker server should if possible be placed on a separate
computer in the fixed network. Typically an Event Source re-
sides near the real world variable it monitors, while an Event
Displayer resides near the end user (e.g., on a PDA). Since in
a mobile environment both the information providers and the
consumers tend to be mobile, the ES and the ED are likely to
be placed on a mobile device.

The central EB, however, should reside on a computer sep-
arate from the ESs or the EDs. There are three reasons why
the EB should not, in general, be placed on the same device
as an ES. Firstly, the EB will likely require a fair amount of
computing resources for data logging and subscription match-
ing, while an ES is usually a simple sensor device. Secondly,
the Event Sources can be autonomous and do not allow the
users to store their own subscriptions there. For example, the

ES can be a stock trading center giving out stock quotes. In-
dividual investors usually cannot ask these sources to monitor
a stock condition for them. Finally, the EB may need to store
a matched event and repeatedly attempt to resend it to its tar-
get as the target has gone offline. It is unreasonable to require
a mobile Event Source to prolong its connection to the fixed
network just because the event recipient is not connected for
the moment.

Likewise, the EB should be hosted on a separate device
from an ED as well. The PDA can be powered off or discon-
nected from the network most of the time to conserve battery,
making it unsuitable to host the EB, which needs to listen
constantly for new events. Furthermore, the computer host-
ing the EB should be placed in the fixed network if possible,
because otherwise when the central EB is disconnected, the
whole system would be paralyzed.

Once we figure out where each part of the system resides, it
would seem that we can simply rely on previous work on mo-
bile networking [23] to provide us with connectivity between
the components and to hide the idiosyncrasies of mobile com-
munication. However, as we will illustrate next, there are is-
sues unique to publish/subscribe in a mobile environment that
we have to consider.

Mobile/wireless devices can be frequently disconnected
from the fixed network because they are off (running out of
battery or turned off to conserve battery), or they cannot be
contacted (e.g., transient wireless communication problems
or wandering into an area without radio reception). A good
mobile publish/subscribe system has to deal gracefully with
both the ES’s and the ED’s going offline. For example, when
a user is out of reach, it is reasonable to expect the EB to log
and queue the user’s events so that they can be delivered later
when the user comes back online.

Because a wireless device can be turned off or discon-
nected for long periods of time, a lot of missed events can
accrue in the meantime. Even if storage at the EB is not a
concern (which can be in an ad-hoc environment, for exam-
ple), the sheer amount of time and precious wireless band-
width required to transmit all of the queued events to the ED
when it reconnects might be unreasonable. In this case, the
EB can attempt to transform the set of events into an “equiv-
alent” (or at least similar) sequence of events which take up
less space [33]. The methods to accomplish this include sum-
marization and selective discarding of events. Here knowl-
edge about the semantics of a subscription often helps.

As an example, suppose the events in the queue contain
information about a certain stock. If the user is interested in
aggregates only, such as the total volume, then the EB could
summarize the entire buffer of events with one event repre-
senting the overall sum. If the user is only interested in “re-
cent” activities, the EB can purge older events from the queue
first. On the other hand, if the overall trend history is de-
sired, then the EB should probably reduce the sampling den-
sity while still maintaining event samples from all time pe-
riods. For example, the EB could try to discard every other
event in timestamp order. Lastly, if the user is only interested



646 HUANG AND GARCIA-MOLINA

when the price breaks new highs, then the EB could retain
only the set of such “important” events.

More issues arise when an Event Source is disconnected.
One option of course is to have the ES queue all the events that
are generated when it is not connected. Such an option may
not be feasible, however, as the ES is often a low capability
device without too much storage. Moreover, the rate of event
accumulation can be very high at the ES, compared to at the
EB where only those events of interest to a disconnected user
need to be queued. Consequently, the ES will have to discard
some events once its buffer fills up. Unfortunately, without
knowledge of what subscriptions exist against its events, the
ES cannot perform more “intelligent” selection of events to
discard, and may have to resort to a standard scheme such as
FIFO replacement (i.e., discard the oldest timestamped event
first).

3.2. Ad-hoc networks

The discussion in the previous paragraphs has assumed a tra-
ditional mobile network where, although many nodes are mo-
bile, some fixed network support is still available. Ad-hoc
networks pose additional challenges to a publish/subscribe
system. An ad-hoc network is formed by wireless devices
communicating without the benefit of a fixed network in-
frastructure. Ad-hoc networks are extremely useful in scenar-
ios where a natural disaster has wiped out the infrastructure,
or where rapid deployment is required and an infrastructure is
not possible, for example in the battlefield.

The lack of a fixed network infrastructure in ad-hoc net-
works implies that the central EB must also be mobile. Hence
we can no longer assume that an EB always stays connected.
If an old EB becomes unreachable, it will have to be replaced.
In particular, when an Event Source wants to publish, it must
first search for an existing EB. If one cannot be found, the ES
will initiate a protocol to elect a new EB. Likewise, an Event
Displayer must periodically poll the EB and refresh its sub-
scription information. Otherwise, the old EB could have gone
out of reach and a new EB elected without knowing about this
ED’s subscription.

The above suggests that, at a given time, there can be more
than one EBs in operation. For example, two EBs could each
be servicing a disconnected partition of the network. Thus,
when one EB becomes aware of the existence of another EB
(for example, when two previously partitioned wireless sub-
nets come into physical proximity), a merging protocol might
have to be invoked to combine them into one central EB. Al-
ternatively, both could operate in a coordinated fashion as dis-
cussed in section 4.

3.3. Centralized with quenching

Quenching has been proposed [26] as an enhancement to the
straightforward centralized approach in fixed networks (fig-
ure 3). An Event Source is given a “combined active subscrip-
tion expression” (call), which represents the logical OR of all
the currently active subscriptions on the Event Broker. Essen-
tially, we have call = c1∨c2∨· · ·∨cN . When a new event e is

Figure 3. Centralized architecture with quenching.

generated, the ES first checks it against call. If call(e) = false,
that means no subscription will match e at the EB. Hence the
event is discarded (quenched) at the source. If e matches call,
then at least one subscription will match, and the event is for-
warded to the EB as usual. This quenching behavior is repre-
sented by the bubbles labeled call in figure 3.

Note that in order for quenching to make sense it must
be much easier to figure out whether or not an event e

matches the combined call than to figure out the exact sub-
set of {c1, c2, . . . , cN } that matches, so that the Event Source
does not have to duplicate all the work that is being done at
the EB1 [29]. Quenching has proved to be particularly effec-
tive in reducing network traffic and the load of the central EB
if a significant portion of the events generated do not match
any subscriptions.

However, the appropriateness of using quenching in a mo-
bile environment needs to be further examined. We have said
previously that an ES can be a wireless low capability sensor
device. Thus it might not be feasible for the ES to evaluate
a complicated condition for every event generated. More-
over, informing the sensor of newly added or deleted sub-
scription could consume valuable wireless bandwidth. On
the other hand, effective quenching can also significantly re-
duce the bandwidth needed to transmit events. Fundamen-
tally, quenching represents a tradeoff between the bandwidth
required to send all events and the computation power needed
to match and filter events. Since a mobile device is usually
limited in both resources, the answer is not apparent.

Quenching can be a particularly attractive option when an
ES is disconnected, since it allows the ES to discard certain
events on the fly, thus reducing the potential size needed for
the event queue. In the case where the queue eventually fills
up and discarding events becomes inevitable, knowing what
subscriptions there are in the system can also be advantageous
in selecting which events to discard, as discussed earlier.

However, quenching is also problematic in disconnection
since the system cannot contact the ES about newly added
subscriptions when the ES is disconnected. Therefore, a rea-
sonable strategy might be a tiered approach as follows. At
the beginning of a disconnection, the ES saves all events in

1 A trivial example where this is true is the following. Suppose c1 =
(e.value > 10) and c2 = (e.value > 20). To figure out whether an event
matches either c1 or c2, it is sufficient to only test whether its “value” is
larger than 10.



PUBLISH/SUBSCRIBE IN A MOBILE ENVIRONMENT 647

the buffer, in case a new subscription not known to the ES
matches them. When the buffer overflows, however, the ES
can then start to discard events according to the quenching
criteria it has. Finally, if this still does not bring the situation
under control, the ES can take more aggressive measures such
as summarization.

4. Distribution

As explained in section 3, centralized systems are limited by
the capability of a single server, beyond which distribution
has to be used. This section illustrates two typical ways that
work is partitioned among multiple servers, and their exten-
sions to the mobile world.

4.1. Distributed broadcast

In distributed broadcast (figure 4), the EBS consists of M

Event Brokers, each responsible for a portion of the N total
subscriptions. The EBs are connected to each other by the net-
work and form a general connected graph.2 An Event Source
publishes a new event to any one of the M EBs. (In reality,
the ES probably connects to the nearest EB in the network.)
That EB is then responsible for forwarding the event to all
other EBs in the system (hence the name “distributed broad-
cast”). The forwarding “broadcast” can be implemented with
network layer multicast [12]. Alternatively, the event could
be sent along a “forwarding tree” rooted at the originating
EB, using unicast at each leg of the trip.

When a new event arrives, each EB matches the new event
against all subscriptions it is responsible for, and delivers the
event as necessary. Note that the matching and delivering
workload at each EB is reduced compared to a centralized
approach because, although each EB still processes all the
events generated in the system, it only has to match them
against a fraction of the total subscriptions. The dotted lines
in figure 4 give an example of the path traversed by an event
which matches c1 and c2. An example of a distributed pub-
lish/subscribe system using broadcast is the SIFT Grid [32].

4.2. Distributed multicast

Distributed broadcast can create a lot of network traffic be-
cause events are flooded to all the Event Brokers. An alterna-
tive approach, called distributed multicast (figure 5), prunes
the forwarding tree. Specifically, when an event arrives at
each EB in the forwarding tree, it is forwarded onto one of
the EB’s outgoing branches only if the event might match a
subscription at some EB leading from this branch. In other
words, the EB selectively forwards an event based on the re-
sult of “partial matching”. In effect, the event is matched
against the logical OR of all the subscriptions stored at all

2 Actual systems may connect the EBs in other topologies such as a hierar-
chical tree instead of a peer-to-peer graph. To be most general, our paper
assumes a graph structure, although our discussion is equally valid for other
structures.

Figure 4. Distributed broadcast. The dotted lines are the path of an example
event which satisfies c1 and c2.

Figure 5. Distributed multicast.

the EBs downstream from a particular branch. If the result
is false, that branch is “pruned” for this event. The behavior
is very similar to what happens at the routers in IP multicast,
hence the name “distributed multicast”.

The need for partial matching implies that, unlike in dis-
tributed broadcast, it is no longer sufficient for each Event
Broker to know about only its share of the active subscrip-
tions. In the worst case, each Event Broker may need to store
all the currently active subscriptions in the system. The Siena
system [8] proposes a solution where multiple subscriptions
can be collapsed into one condition, at the expense of re-
stricted subscription syntax.

Unlike distributed broadcast, distributed multicast can no
longer take advantage of network layer multicast directly to
forward events to needed EBs, because potentially complex
partial matching needs to be performed at each step. An effi-
cient implementation of the forwarding tree without using IP
multicast is given in [3].

4.3. Mobile adaptation

In addition to the challenges facing a mobile centralized sys-
tem, there are more issues associated with adapting a distrib-
uted publish/subscribe architecture to a mobile environment.
Because EDs often move around, an ED may disconnect and
connect to a different EB quite often. When the ED recon-
nects to a different EB, two things need to happen. First, the
new EB needs to be informed of the ED’s subscription so that
the routing tree can be adjusted to direct relevant events to
the ED. Second, the new EB needs to obtain all the events



648 HUANG AND GARCIA-MOLINA

queued on behalf of the ED while the ED was disconnected
and deliver them to the ED. For both tasks, the new EB may
contact the EB previously in charge of the user’s subscrip-
tion to obtain the information as part of a “handoff” proto-
col [10].

Alternatively, however, an ED can carry its own subscrip-
tion information, and upload it onto the new EB when the ED
reconnects. The advantage of this approach is that the ED
can still receive new events even if the old EB is temporarily
down or partitioned from the new EB. (Of course the new EB
still needs to attempt contact with the old EB periodically to
cancel the old subscriptions.)

The potential downside is that the ED may end up with
more than one EBs monitoring the same subscription for it.
Reference [16] proposes several schemes for mobile handheld
devices which ensure that the ED receives the same message
exactly once. For example, one variation requires the ED to
keep a log of its past connections, which includes a timestamp
and the id of the EB for each connection. Whenever the ED
makes a new connection, this information is uploaded to the
new EB, which uses it to check for any potential danger of
duplicate delivery. For instance, events generated after the
ED’s last previous connection can safely be delivered. More-
over, if another EB cannot be contacted at the moment, but
the log shows that the last connection to that EB happened
“long enough” ago in the past, then queued events may still
be delivered without worrying about duplication.

The subscription handoff protocol needs to be designed
carefully so that, as the new routing information slowly per-
colates up the forwarding tree, no event from any potential
source is lost. Ideally the same event should not be delivered
both to the old and to the new EBs. If that is impossible to
guarantee, however, mechanisms to eliminate duplicates will
be needed again.

In certain wireless systems, it is sometimes possible to
further optimize the connection behavior by using an “inte-
grated” approach. Cellular communication systems, for ex-
ample, use base stations as access points for wireless devices
into the fixed network. A wireless device is controlled by one
and only one base station at any time it is connected. When
it moves out of the range of an old base station and into the
range of a new one, a wireless handoff protocol is invoked.
Naturally, the base stations in such systems are ideal can-
didates for Event Brokers in a distributed publish/subscribe
system. In this case, subscription handoff can be handled
as merely an additional step in wireless connectivity handoff,
thus saving valuable time and resources.

4.4. Ad-hoc networks

In a wireless ad-hoc distributed publish/subscribe system,
multiple EBs reside on wireless mobile devices, and coop-
erate with each other via radio to deliver events from their
sources to interested users. Additional problems arise in such
a system because the EBs can no longer be placed on fixed
nodes as assumed above. We next discuss the problem of how

to construct and maintain the interconnection network of the
EBs.

Traditional distributed publish/subscribe systems are usu-
ally built as an overlay network of EBs over an IP-like net-
working infrastructure which provides universal connectivity.
In other words, they assume that the underlying routing fabric
always provides connectivity between any two nodes in the
system, and at a roughly constant cost. Thus, a new EB join-
ing the system can choose any other existing EB to connect
to in order to start receiving events. Although this assumption
is reasonable in fixed networks, it is wasteful in an ad-hoc
environment.

Unicast protocols have been proposed for ad-hoc networks
[20,25], which give users the abstraction that any node can
talk to any node else. However, ad-hoc unicasts are actu-
ally implemented with multi-hop broadcasts. If we build an
ad-hoc publish/subscribe system purely on top of the unicast
framework, the wireless broadcast nature of radio is hidden.
Instead, we believe that such a system should build directly
on top of lower level radio broadcast primitives due to the
“many-cast” nature of the publish/subscribe mechanism. This
way, with one broadcast operation, an EB can send an event
to multiple other interested EBs.

We define the connectivity graph G of a system as the
graph whose vertices are the EBs, and where an edge ex-
ists between two vertices if the two corresponding EBs are
“neighbors”. Two EBs are neighbors if they can talk to each
other directly via radio, i.e., if they are a single hop away.3

After a new event is published to an initial EB, it is for-
warded from one EB to another towards its destinations. The
paths followed by all events from a particular initial EB con-
stitute a tree, which is called a publish/subscribe tree (PST).
Because we have determined to only use radio broadcast
primitives, two EBs should talk to each other only if they
are adjacent in the connectivity graph. Therefore, we effec-
tively restrict the PST to be a spanning tree of the connectivity
graph G.

Note that a PST is rooted at an EB where new events are
published. If multiple EBs in one system are allowed to pub-
lish events, which is often the case, we then must choose
one of the following two options. First, there can be multi-
ple publish/subscribe trees, one per EB that can potentially
accept new event publications. Alternatively, we can require
any new event published to be passed to a global root EB
first via a unicast protocol. A possible optimization to the
latter option above is to forward the event towards the root
along the publish/subscribe tree itself, allowing shortcutting
to tree branches along the way, thus eliminating the need for
the event to be passed back in this direction. The tradeoff of
the two options is similar to the shared versus per-source tree
discussion in ad-hoc multicast, and the user is referred to [31]
for a detailed treatment. In the discussions that follow, we

3 The connectivity graph is assumed to be undirected, precluding the situa-
tion where one EB can hear another, but not vice versa. We further assume
that G is connected, although the algorithms discussed next can be aug-
mented, for example, by adding expanding ring searches for the nearest
EB.



PUBLISH/SUBSCRIBE IN A MOBILE ENVIRONMENT 649

assume a fixed root EB, say, EB1, where all new events are
published. The discussion can be easily extended to deal with
any of the alternatives proposed above.

Obviously, in any given system, there usually can be many
possible PSTs (as many as there are spanning trees in the con-
nectivity graph G). Some trees are considered better than oth-
ers because in these trees events travel a shorter distance, on
average, to reach their destinations.

Example 1. As a simple example, figure 6 shows a system
with three EBs. Assume both EBs 2 and 3 can receive events
directly from the root, EB1. If they both do, the resulting PST
is given by the thick lines in figure 6(a). If, on the other hand,
EB3 chooses to rely on EB2 to forward events, we have the
PST in figure 6(b). Intuitively, the PST in figure 6(a) is “bet-
ter” than 6(b) since those events of interest to 3 need travel
only one hop instead of two.

In order to meaningfully compare different PSTs, we need
a metric to measure the “efficiency” of a PST. The metric
is called the overhead of a publish/subscribe tree, and mea-
sures the total amount of “work” performed by all EBs in or-
der to publish a given set E of events. For example, when
a new event reaches a particular EB, the EB has to perform
actions such as checking for matches, buffering the event and
re-broadcasting the event for children in the PST, etc. These
actions are all factored into the overhead calculation. Ref-
erence [18] more precisely defines the evaluation metric. We
note that, not surprisingly, the tree in figure 6(a) has less over-
head than the tree of figure 6(b).

A publish/subscribe tree construction algorithm is the pro-
tocol run by the EBs in order to determine which PST to use.
The algorithm aims to minimize the overhead of the result-
ing publish/subscribe tree based on the metric presented ear-
lier. We propose a greedy tree construction algorithm called
SHOPPARENT which is fully distributed. In particular, the
PST is constructed by each EB running one instance of the
algorithm and making its own decision about which other EB
to select as its parent. The parent is chosen according to cri-

(a) “Good” PST.

(b) “Not-as-good” PST.

Figure 6. Two PSTs of the same connectivity graph. The lines represent the
connectivity graph, while the thick ones constitute a PST.

teria aimed to minimize overhead. SHOPPARENT is a greedy
local algorithm because no node needs to have global knowl-
edge about the system.

The implementation details of SHOPPARENT are given
in [18]. In short, each EB periodically broadcasts a PARENT-
PROBE to all EBs in its immediate radio neighborhood, giv-
ing its desired subscription. A recipient of the probe replies
with a PARENT-ADVERTISE message if it is capable of par-
enting the requester. The reply contains, in addition to other
necessary information, an estimate of how much its overhead
will increase if the requesting EB connects to it. The origi-
nal EB selects among all the replies the one with the smallest
expected overhead. Because the probe is periodical, an EB is
constantly searching for a better parent, and the tree can re-
configure itself as a result of changes in the system such as
node movements and failures.

Because nodes consider subscriptions when making con-
nections, they can make better decisions, compared to tradi-
tional multicast algorithms. The following simple example
illustrates this point.

Example 2. Figure 7 shows a simple system with five EBs.
EB4 is joining the system, and is trying to select either 5
(figure 7(a)) or 3 (figure 7(b)) as its parent in the PST. If a
naive algorithm is used, it seems that 5 should be selected,
since it is closer to the root (EB1) by one hop. However, as-
sume that EB4’s subscription is very “similar” to that of 3.
In fact, assume that the overlap is total, and both of them are
interested in “sports.basketball.lakers” in a news group set-
ting. On the other hand, 5 is interested in something totally
different, e.g., “rec.cooking”. If 5 becomes the parent, all
“sports.basketball.lakers” events will need to pass through it
as well. It turns out that, therefore, figure 7(b) represents a
more efficient PST than figure 7(a). Because SHOPPARENT

bases decisions on the subscriptions of the new EB and its
proposed parent, it can produce the desired result.

In order to evaluate the algorithms, we run experiments
based on simulation. We have come up with ways to simulate

(a) PST a.

(b) PST b.

Figure 7. Two PSTs of the same connectivity graph.



650 HUANG AND GARCIA-MOLINA

various facets of the system, from the connectivity graph G,
to user subscriptions and event publications. For example, we
use two models (below) to simulate subscriptions. The mod-
els correspond to systems of different characteristics. Yet,
they both have enough tunable parameters that allow us to
vary the experiments in interesting ways.

The first subscription model, called Number Intervals, uses
an interval on the number axis, e.g., [3.0, 4.0], or [100,∞),
to represent a user’s subscription. Then, an event is repre-
sented by a single number, e.g., 3.2. The event matches a
subscription if and only if its number falls within the subscrip-
tion interval. Thus, event 3.2 matches subscription [3.0, 4.0],
but not [100,∞). By carefully picking the intervals, we can
adjust the sizes of each user’s subscriptions, as well as the
amount of overlap between them.

While the Number Intervals model can be mapped directly
to many real world applications such as temperature range
monitoring, our second model simulates other scenarios such
as newsgroups. In the Topic Tree model, a range of possible
topics are arranged in a hierarchical tree. Each event is tagged
with its topic, and each user is interested in a portion of the
overall tree. Again, subscription scopes and overlap can be
easily quantified and adjusted.

Reference [18] offers an in-depth study of SHOPPARENT.
For instance, experiments show that the greedy SHOPPAR-
ENT performs well in normal operating environments, with
less than 15% overhead compared to a global optimal strat-
egy (which is, of course, impractical to implement). Further-
more, [18] demonstrates that being “subscription-aware” is
advantageous, and that its advantage increases with the over-
all amount of overlap between user subscriptions.

5. Replication

Replication can be used in a publish/subscribe system to
increase its availability and reliability when faced with
server failures or network partitions. In a replicated publish/
subscribe system (figure 8), a user’s subscription is monitored
by multiple Event Brokers independently. In particular, in fig-
ure 8 we assume that two EBs, EB1 and EB2, simultaneously
monitor the subscriptions for each user. On the other hand,
we assume that there is still only one Event Displayer associ-
ated with each user, because, as we have discussed before, the

Figure 8. Replicated publish/subscribe.

ED is usually a program running on the PDA which the user
carries with him/her. Hence, the two streams of events gen-
erated by EB1 and EB2 will merge at the ED. Note that for
simplicity we use a centralized architecture as the basis for
replication. Although we do not discuss it here, replication
can also be introduced in a distributed system like the ones in
figures 4 and 5.

With replication, a user is less likely to miss events. For in-
stance, suppose that EB1 misses some events from a particu-
lar mobile source which can only communicate with EB2 due
to temporary network problems.4 Then the events can still be
matched by EB2 and delivered to the appropriate EDs. How-
ever, without any safeguards, replication can create “consis-
tency” problems in a publish/subscribe system. Specifically,
the user may receive a sequence of events that are confus-
ing or even contradictory. As a simple example, without a
mechanism to eliminate duplicates, the same event may get
delivered to the user twice, once from each EB. The user will
get confused if he/she relies on the events to keep track of
an important count, such as the exact number of missiles that
have been fired.

As another example, although it is not difficult to make
a single EB always deliver events from the same source in
order, replication can often result in an unordered event se-
quence when events from the two EBs are interleaved at the
ED. For instance, suppose event number 3 is missed by EB1
but received by EB2. It is therefore entirely possible for EB1
to deliver the next event, say number 4, to the user before EB2
could have a chance to deliver event 3. Out-of-order event
streams can be a problem if the order of events is significant,
for example to establish a trend in the movements of a stock’s
price.

We can define three desirable properties for a replicated
publish/subscribe system: Orderedness, Consistency and
Completeness. The goal in general is to rule out deliver-
ies of events to a user that could not have occurred with a
non-replicated system. Intuitively, orderedness indicates that
events from the same ES are delivered to the user in the order
they are generated at the ES. Since a non-replicated system
delivers events in this order, a replicated system that is or-
dered behaves similarly in this respect.

For a replicated system to be consistent, the set of events it
displays to an end user over time must be a set that can pos-
sibly be generated by a non-replicated system (although per-
haps in a different order). In other words, a user should not
be able to tell, from observing the events that are displayed
to him/her, that replication is being used (except for possi-
bly increased reliability and responsiveness). For example, a
replicated system that delivers duplicates to the end user is
trivially not consistent.

Lastly, completeness requires a replicated system R to
display all events that would be displayed by an equivalent
non-replicated system N had the single EB in N received all

4 We assume that events can be lost when they are sent from their source
to an EB. However, since we assume that the EB buffers and retransmits
events as necessary, the link between the EB and the ED is assumed to be
lossless.



PUBLISH/SUBSCRIBE IN A MOBILE ENVIRONMENT 651

Table 1
Properties satisfied by a replicated publish/subscribe system under various
ED filtering algorithms.

ED filtering Orderedness Consistency Completeness

No filtering X X
√

Duplicate removal X
√ √

Out-of-order and
duplicate removal

√ √
X

events that were received by EB1 or EB2 in R. For example,
if an event matching the user’s subscription arrives at EB1
but is missed by EB2 due to network packet loss, then a com-
plete replicated system will need to ensure that the event is not
discarded (see next on Event Displayer filtering) and is ulti-
mately delivered to the user. Completeness is a measurement
of how effective a replicated system is at guarding against loss
of events in the network. Our three notions of correctness are
defined more formally in [17].

Obviously, if the Event Displayer simply passes along any
event it receives to the user, the resulting replicated system
will be neither consistent (due to duplicates) nor ordered. Ta-
ble 1 summarizes properties satisfied by a replicated system
under various configurations, with the first row being when
no special processing is done by the ED. However, as we will
see next, some system properties can be enhanced or enforced
if the ED performs an extra step to filter out some events (e.g.,
duplicates) before passing them on to the user.

In the simplest example, the ED can implement a straight-
forward “exact duplicate elimination” algorithm, in which an
event is discarded by the ED if an identical one has already
been displayed previously. Identical events are identified by
examining their sources and sequence numbers, which infor-
mation the ED keeps for displayed events. (The exact defi-
nition of “identical” is given in [17].) The modified system
properties under this ED filtering algorithm are listed in the
second row of table 1. As shown in the table, the system has
gained consistency as a result.

For situations where an ordered event stream is impera-
tive, an ED filtering algorithm has been proposed in [17] to
enforce orderedness of a replicated system. Essentially, the
ED records the last seen sequence number from each Event
Source and discards any new event that arrives out of order.
The disadvantage of this algorithm, however, is that the sys-
tem is no longer complete, since some events may be “unnec-
essarily” filtered out based on their arrival order rather than
their content. The tradeoff of completeness versus ordered-
ness should be decided by the individual applications. The
last row in table 1 gives the system properties under a com-
bined filtering algorithm that guarantees both orderedness and
consistency.

Reference [17] offers an in-depth study of replication in
publish/subscribe systems. For instance, it discusses systems
with the ability to generate new events based on patterns in
a stream of events. It is shown that such systems are usu-
ally inconsistent, because event loss can often lead to diver-
gent perceptions between the two EBs about what constitutes
a triggering pattern. Consequently, more sophisticated ED

filtering algorithms are developed to guarantee consistency in
such scenarios. Additionally, subscriptions defined on event
“joins” from different streams are also studied. The paper
also investigates multiple subscriptions submitted by the same
user that are interrelated and need to be monitored in a coher-
ent fashion.

6. Conclusion

In this paper we discussed how to adapt a publish/subscribe
system to a mobile operating environment. We described sev-
eral architectures of a publish/subscribe system, starting from
the simple centralized approach, to distributed ones with im-
proved scalability, and finally to replication that increases re-
liability but may cause consistency problems. We discussed
issues and possible solutions specific to adapting the vari-
ous architectures to a mobile and/or wireless environment.
We also sketched solutions to the more challenging problems
posed by ad-hoc networks. In presenting our work, we also
surveyed some of the important work on content-based pub-
lish/subscribe systems in fixed networks.

References

[1] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley and T.D. Chan-
dra, Matching events in a content-based subscription system, in: Pro-
ceedings of the 18th Annual ACM Symposium on Principles of Distrib-
uted Computing (1999) pp. 53–61.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, Models
and issues in data stream systems, in: Proceedings of the 2002 ACM
Symposium on Principles of Database Systems (2002).

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom
and D.C. Sturman, An efficient multicast protocol for content-based
publish–subscribe systems, in: Proceedings of the 19th International
Conference on Distributed Computing Systems (1999) pp. 262–272.

[4] G. Banavar, M. Kaplan, K. Shaw, R.E. Strom, D.C. Sturman and
W. Tao, Information flow based event distribution middleware, in: Pro-
ceedings of the 1999 ICDCS Workshop on Electronic Commerce and
Web-Based Applications (1999).

[5] K. Birman, The process group approach to reliable distributed comput-
ing, Communications of the ACM 36(12) (1993) 36–53.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul and S.B. Zdonik, Monitoring streams
– a new class of data management applications, in: Proceedings of the
28th International Conference on Very Large Data Bases (2002).

[7] A. Carzaniga, E. Nitto, D. Rosenblum and A. Wolf, Issues in support-
ing event-based architectural styles, in: Proceedings of the 3rd Interna-
tional Software Architecture Workshop (1998).

[8] A. Carzaniga, D.S. Rosenblum and A.L. Wolf, Achieving scalability
and expressiveness in an Internet-scale event notification service, in:
Proceedings of the 19th Annual ACM Symposium on Principles of Dis-
tributed Computing (2000) pp. 219–227.

[9] S. Ceri and J. Widow, Active Database Systems: Triggers and Rules for
Advanced Database Processing (Morgan Kaufmann, 1996).

[10] G. Cugola, E.D. Nitto and A. Fuggetta, The JEDI event-based in-
frastructure and its application to the development of the OPSS WFMS,
IEEE Transactions on Software Engineering 27(9) (2001) 827–850.

[11] G. Cugola, E.D. Nitto and G.P. Picco, Content-based dispatching in a
mobile environment, in: Proceedings of the Workshop su Sistemi Dis-
tribuiti: Algoritmi, Architetture e Linguaggi (2000).

[12] S.E. Deering, Multicast routing in a datagram Internetwork, Ph.D. The-
sis, Stanford University (1991).



652 HUANG AND GARCIA-MOLINA

[13] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, Next century chal-
lenges: scalable coordination in sensor networks, in: Proceedings of the
5th Annual ACM/IEEE International Conference on Mobile Computing
and Networking (1999) pp. 263–270.

[14] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross and
D. Shasha, Filtering algorithms and implementation for very fast pub-
lish/subscribe systems, in: Proceedings of the 2001 ACM SIGMOD In-
ternational Conference on Management of Data (2001) pp. 115–126.

[15] J.M. Hellerstein, M.J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman and M.A. Shah, Adaptive query
processing: Technology in evolution, IEEE Data Engineering Bulletin
23(2) (2000) 7–18.

[16] Y. Huang and H. Garcia-Molina, Exactly-once semantics in a replicated
messaging system, in: Proceedings of the 17th International Confer-
ence on Data Engineering (2001) pp. 3–12.

[17] Y. Huang and H. Garcia-Molina, Replicated condition monitoring, in:
Proceedings of the 20th ACM Symposium on Principles of Distributed
Computing (2001) pp. 229–237.

[18] Y. Huang and H. Garcia-Molina, Publish/subscribe tree construction
in wireless ad-hoc networks, in: Proceedings of the 4th International
Conference on Mobile Data Management (2003) pp. 122–140.

[19] B. Kantor and P. Lapsley, Network News Transfer Protocol: A pro-
posed standard for the stream-based transmission of news, Request for
Comments 977 (1986).

[20] S.-J. Lee, Routing and multicasting strategies in wireless mobile ad
hoc networks, Ph.D. Thesis, University of California at Los Angeles
(2000).

[21] Object Management Group, CORBA services – event service specifi-
cation, Technical Report, Object Management Group (1997), ftp://
ftp.omg.org/pub/docs/formal/97-12-11.pdf

[22] B. Oki, M. Pfluegl, A. Siegel and D. Skeen, The Information Bus –
an architecture for extensible distributed systems, Operating Systems
Review 27(5) (1993) 58–68.

[23] C. Perkins, IP mobility support, Request for Comments 2002 (1996).
[24] PreCache Inc., Precache messaging engine, http://www.

precache.com/tech.html
[25] S. Ramanathan and M. Streenstrup, A survey of routing techniques for

mobile communication networks, ACM/Baltzer Mobile Networks and
Applications 1(2) (1996) 89–104.

[26] B. Segall and D. Arnold, Elvin has left the building: A publish/
subscribe notification service with quenching, in: Proceedings of
the 1997 Australian UNIX Users Group Technical Conference (1997)
pp. 243–255.

[27] Sun Microsystems, Inc., Jini(TM) technology core platform spec –
distributed events, Technical Report, Sun Microsystems, Inc. (2000),
http://www.sun.com/software/jini/specs/jini1.
1html/event-spec.html

[28] TIBCO Software Inc., TIBCO Rendezvous, http://www.tibco.
com/solutions/products/active_enterprise/rv/

[29] P. Triantafillou and A. Economides, Subscription summaries for scal-
ability and efficiency in publish/subscribe systems, in: Proceedings of

the International Workshop on Distributed Event-Based Sytems (2002)
pp. 619–624.

[30] Vitria Technology, Inc., Businessware enterprise application in-
tegration, http://www.vitria.com/products/platform/
eai.html

[31] C. Wu, Y. Tay and C.-K. Toh, Ad hoc Multicast Routing protocol utiliz-
ing Increasing id-numberS (AMRIS) functional specification, Internet
draft (1998).

[32] T.W. Yan and H. Garcia-Molina, The SIFT information dissemination
system, ACM Transactions on Database Systems 24(4) (1999) 529–
565.

[33] Y. Zhao and R. Strom, Exploiting event stream interpretation in
publish–subscribe systems, in: Proceedings of the 20th ACM Sympo-
sium on Principles of Distributed Computing (2001) pp. 219–228.

Yongqiang Huang is currently a software engineer
at Google Inc., Mountain View, CA. He received a
B.S. and a M.S. in computer science from Stanford
University, Stanford, CA, concurrently in 1996. He
also received his Ph.D. in computer science from
Stanford University in 2003. His research interests
include scalable information dissemination, reliable
messaging systems, and mobile networking.
E-mail: yhuang@cs.stanford.edu

Hector Garcia-Molina is the Leonard Bosack and
Sandra Lerner Professor in the Departments of Com-
puter Science and Electrical Engineering at Stan-
ford University, Stanford, CA. He is the chairman of
the Computer Science Department since January 1,
2001. From 1997 to 2001 he was a member the Pres-
ident’s Information Technology Advisory Commit-
tee (PITAC). From August 1994 to December 1997
he was the Director of the Computer Systems Labo-
ratory at Stanford. From 1979 to 1991 he was on the

faculty of the Computer Science Department at Princeton University, Prince-
ton, NJ. His research interests include distributed computing systems, digital
libraries and database systems. He received a B.S. in electrical engineering
from the Instituto Tecnologico de Monterrey, Mexico, in 1974. From Stan-
ford University, Stanford, CA, he received in 1975 a M.S. in electrical engi-
neering and a Ph.D. in computer science in 1979. Garcia-Molina is a Fellow
of the Association for Computing Machinery; is a fellow of the American
Academy of Arts and Sciences; received the 1999 ACM SIGMOD Innova-
tions Award; is a member of the Computer Science and Telecommunications
Board (National Research Council); is on the Technical Advisory Board of
eGuanxi, Enosys Markets, Kintera, Metreo Markets, Morhsoft, TimesTen,
Verity; and is a member of the Oracle Board of Directors.
E-mail: hector@cs.stanford.edu


