
LIME: A Middleware for Physical and Logical Mobility

Amy L. Murphy
Dept. of Computer Science

University of Rochester
P.O. Box 270226

Rochester, NY, 14627, USA
murphy@cs.rochester.edu

Gian Pietro Picco
Dip. di Elettronica e Informazione

Politecnico di Milano
P.za Leonardo da Vinci, 32

20133 Milano, Italy
picco@elet.polimi.it

Gruia-Catalin Roman
Dept. of Computer Science

Washington University
One Brookings Drive

St. Louis, MO 63130, USA
roman@cs.wustl.edu

Abstract

LIME is a middleware supporting the development of ap-
plications that exhibit physical mobility of hosts, logical
mobility of agents, or both. LIME adopts a coordination
perspective inspired by work on the Linda model. The con-
text for computation, represented in Linda by a globally ac-
cessible, persistent tuple space, is represented in LIME by
transient sharing of the tuple spaces carried by each indi-
vidual mobile unit. Linda tuple spaces are also extended
with a notion of location and with the ability to react to a
given state. The hypothesis underlying our work is that the
resulting model provides a minimalist set of abstractions
that enable rapid and dependable development of mobile
applications. In this paper, we illustrate the model under-
lying LIME, present its current design and implementation,
and discuss initial lessons learned in developing applica-
tions that involve physical mobility.

1. Introduction

Middleware has emerged as a new development tool
which can provide programmers with the bene£ts of a
powerful virtual machine specialized and optimized for
tasks common in a particular application setting without
the major investments associated with the development of
application-speci£c languages and systems. Given the com-
plexities associated with software involving mobile hosts
and agents, middleware is expected to establish itself as an
important new technology. This paper addresses middle-
ware for mobility and presents an example of how a new
abstract model supporting both physical and logical mobil-
ity can be delivered in the form of middleware.

The starting point for our investigation was the notion
that a coordination perspective on mobility holds the key to
simplifying the development effort. The idea is to elimi-
nate the programmer’s need to be concerned with the me-

chanics of communication among hosts and agents. The
interactions among mobile units of any kind are expressed
separately from the application processing and are imple-
mented in a transparent manner by the middleware fabric.
The middleware presented in this paper (LIME—Linda in a
Mobile Environment) explores this idea by providing pro-
grammers with a global virtual data structure, a Linda-like
tuple space whose content is determined by the connectivity
among mobile hosts. Individual programs perceive the ef-
fects of mobility as behind-the-scene changes in the content
of their own local tuple spaces. The resulting middleware is
essentially an embodiment of a model of mobility in which
coordination takes place via a global tuple space physically
distributed among mobile units and logically partitioned ac-
cording to connectivity among the units.

When viewed in the broader context of mobility, LIME

is indeed a new breed of middleware. LIME is general pur-
pose, model-centric, and inclusive of both physical and log-
ical mobility. It provides novel programming constructs in
a manner that is sensitive to the constraints imposed by the
realities of mobility.

In the remainder of the paper we provide an overview of
LIME (Section 2), we examine the implementation strategy
(Section 3), and review our experience with several appli-
cations developed using LIME (Section 4). The paper con-
cludes with a brief discussion of lessons learned (Section 5)
followed by conclusions (Section 6) and references.

2. LIME: Linda in a Mobile Environment

The LIME model [7] aims at identifying a coordination
layer that can be exploited successfully for designing appli-
cations that exhibit logical and/or physical mobility. LIME

borrows and adapts the communication model made popu-
lar by Linda [2].

In Linda, processes communicate through a shared tuple
space that acts as a repository of elementary data structures,



or tuples. A tuple space is a multiset of tuples that can be
accessed concurrently by several processes. Each tuple is a
sequence of typed parameters, such as 〈“foo”, 9, 27.5〉, and
contains the actual information being communicated.

Tuples are added to a tuple space by performing an
out(t) operation, and can be removed by executing in(p).
Tuples are anonymous, thus their selection takes place
through pattern matching on the tuple content. The argu-
ment p is often called a template, and its £elds contain either
actuals or formals. Actuals are values; the parameters of the
previous tuple are all actuals, while the last two parameters
of 〈“foo”, ?integer, ?¤oat〉 are formals. Formals act like
“wild cards”, and are matched against actuals when select-
ing a tuple from the tuple space. For instance, the template
above matches the tuple de£ned earlier. If multiple tuples
match a template, the one returned by in is selected non-
deterministically. Tuples can also be read from the tuple
space using the rd operation. Both in and rd are block-
ing, i.e., the process performing the operation blocks until
a matching tuple is found in the tuple space. A typical ex-
tension to this synchronous model is the provision of a pair
of asynchronous primitives inp and rdp, called probes, that
allow non-blocking access to the tuple space1.

2.1. The LIME model

Linda characteristics resonate with the mobile setting. In
particular, communication in Linda is decoupled in time and
space, i.e., senders and receivers do not need to be available
at the same time, and mutual knowledge of their location
is not necessary for data exchange. This form of decou-
pling is of paramount importance in a mobile setting, where
the parties involved in communication change dynamically
due to their migration or connectivity patterns. Another key
to mobility is that the global context for operations is de-
£ned by the transient community of mobile units that are
currently present. Since these communities are dynamically
changing according to connectivity and migration, the con-
text changes as well.
The Core Idea: Transparent Context Maintainance. In
the model underlying LIME, the shift from a £xed context
to a dynamically changing one is accomplished by break-
ing up the Linda tuple space into many tuple spaces, each
permanently associated to a mobile unit, and by introduc-
ing rules for transient sharing of the individual tuple spaces
based on connectivity.

From the perspective of a mobile unit, the only way to
access the global context is through a so-called interface
tuple space (ITS), which is permanently and exclusively at-
tached to the unit itself. The ITS contains tuples the mobile

1Linda implementations often include also an eval operation which
provides dynamic process creation and enables deferred evaluation of tuple
£elds. For the purposes of this work, however, we do not consider further
this operation.

unit is willing to make available to other units, and that are
concretely co-located with the unit itself. This represents
the only context accessible to the unit when it is alone. Ac-
cess to the ITS takes place using the Linda primitives al-
ready mentioned, whose semantics is basically unaffected.
Nevertheless, this tuple space is also transiently shared with
the ITSs belonging to the mobile units that are currently part
of the community. Hence, the content perceived through the
ITS changes dynamically in response to changes in the set
of co-located mobile units.

Upon arrival of a new mobile unit, tuples in the ITS of the
new unit are merged with those, already shared, belonging
to the other mobile units, and the result is made accessible
through the ITS of each of the units. This sequence of oper-
ations, called engagement, is performed as a single atomic
operation. Similar considerations hold for the departure of
a mobile unit, resulting in the disengagement of the corre-
sponding tuple space and the removal of data perceived by
the remaining units through their ITSs.

Transient sharing of the ITS constitutes a very powerful
abstraction, as it provides a mobile unit with the illusion of
a local tuple space that contains all the tuples coming from
all the units belonging to the community, without any need
to know them explicitly.
Encompassing Physical and Logical Mobility. Thus far
we have glossed over the nature of the mobile unit at hand,
that is, we did not specify whether it is a mobile agent mov-
ing in logical space or a mobile host roaming the physical
space. This is precisely because the LIME notion of a tran-
siently shared tuple space is applicable to a mobile unit re-
gardless of its nature, as long as a notion of connectivity
ruling engagement and disengagement is properly de£ned.

In an ad hoc network, LIME mobile hosts are connected
when distance between them allows communication. Mo-
bile agents are connected when they are co-located on the
same host, or they reside on hosts that are connected. Cre-
ation and termination of mobile agents is a special case of
connection and disconnection, respectively. Figure 1 de-
picts the model adopted by LIME. Mobile agents are the
only active components; mobile hosts are mainly roaming
containers which provide connectivity and execution sup-
port for agents. In other words, mobile agents are the only
components that carry a “concrete” tuple space with them.

The transiently shared ITSs belonging to multiple agents
co-located on a host de£ne a host-level tuple space. The
concept of transient sharing can also be applied to the host-
level tuple spaces of connected hosts, forming the federated
tuple space. When a federated tuple space is established, a
query on the ITS of an agent returns a tuple that may belong
indifferently to the tuple space carried by that agent, to a
tuple space belonging to a co-located agent, or to a tuple
space associated with an agent residing on some remote,
connected host.



Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 1. Transiently shared tuple spaces encompass
physical and logical mobility.

Controlling Context Awareness. Thus far, LIME appears
to foster a style of coordination that reduces the details of
distribution and mobility to changes in what is perceived as
a local tuple space. This view is powerful as it relieves the
designer from speci£cally addressing the changes in con-
£guration, but some mobile applications need to explicitly
address the distributed nature of the data for performance
or optimization reasons. Such £ne-grained control over the
context perceived by the mobile unit is provided in LIME by
extending Linda operations with tuple location parameters
that operate on user de£ned projections of the transiently
shared tuple space. Tuple location parameters are expressed
in terms of agent identi£ers or host identi£ers.

The out[λ] operation extends out with a location param-
eter representing the identi£er of the agent responsible for
holding the tuple. The semantics of out[λ](t) involve two
steps. The £rst step is equivalent to a conventional out(t),
the tuple t is inserted in the ITS of the agent calling the oper-
ation, say ω. At this point the tuple t has a current location
ω, and a destination location λ. If the agent λ is currently
connected, the tuple t is atomically moved to the destination
location. On the other hand, if λ is not currently connected,
the tuple remains at the current location, the tuple space of
ω. This “misplaced” tuple, if not withdrawn2, will remain
misplaced unless λ becomes connected. In the latter case,
the tuple will migrate to the tuple space associated with λ

as part of the engagement transaction. By using out[λ], the
caller can specify that the tuple is supposed to be placed
within the tuple space of agent λ. This way, the default
policy of keeping the tuple in the caller’s context until it is
withdrawn can be overridden, and more elaborate schemes
for transient communication can be developed.

Location parameters also come into play to provide vari-
ants of the in and rd operations to allow access to a slice

2Note how specifying a destination location λ does not imply guaran-
teed delivery of the tuple t to λ. Linda rules for non-deterministic selection
of tuples are still in place; thus, some other agent may withdraw t from the
tuple space before λ, even after t reached λ’s ITS.

of the current context. These operations are annotated as
in[ω, λ] and rd[ω, λ], and more details are provided at the
end of this section.

Disengagement relies on the notion of tuple location, as
well. Upon occurrence of a disconnection, the transiently
shared tuple space is partitioned into its constituents, i.e., as
if each mobile agent were alone. In this con£guration, the
ITS of each mobile agent ω contains only the portion of the
transiently shared tuple space it is responsible for, i.e., all
the tuples whose current location is ω, including misplaced
tuples. Next, the ITS are merged again according to the new
system connectivity after disconnection, effectively creat-
ing two partitioned federated tuple spaces. It is important
to note that the above is simply a conceptual description of
the disengagement process. In practice, no tuple transfer is
needed to comply with the desired semantics, provided that
the atomicity of engagement and of out[λ] is preserved.

It is interesting to note that the extension of Linda op-
erations with location parameters, as well as the other op-
erations discussed thus far, foster a model that hides com-
pletely the details of the system (re)con£guration that gen-
erated those changes. For instance, if the probe inp[ω, λ](p)
fails, this simply means that no tuple matching p is avail-
able in the projection of the federated tuple space over the
location parameters [ω, λ]. It is not possible to determine
whether the failure is due to the fact that agent ω does not
have a matching tuple, or whether agent ω is not currently
part of the community.

Without awareness of the system con£guration, only a
partial context awareness, that concerned with application
data, can be achieved. Although this perspective is often
enough for many mobile applications, in some cases the
con£guration context plays a key role. For instance, a typ-
ical problem is to react to departure of one of the parties
involved, or to determine the set of parties currently be-
longing to the mobile community. LIME exposes this infor-
mation through a read-only, system-maintained tuple space,
conventionally named LimeSystem. Its tuples contain in-
formation about the mobile units present in the community,
and their relationship, e.g., which tuple spaces they are shar-
ing or, for mobile agents, which host they reside on. Stan-
dard tuple space operations, including reactions as de£ned
next, can be used to access the system con£guration.
Reacting to Changes in Context. Mobility enables a
highly dynamic environment, where reaction to changes
constitutes a major fraction of the application design.
Therefore, LIME extends the basic Linda tuple space with a
notion of reaction. A reaction R(s, p) is de£ned by a code
fragment s that speci£es the actions to be executed when a
tuple matching the pattern p is found in the tuple space. The
semantics of reactions is based on Mobile UNITY reactive
statements, described in [5]. After each operation on the
tuple space, a reaction is selected non-deterministically and



the pattern p is compared against the content of the tuple
space. If a matching tuple is found, s is executed, otherwise
the reaction is a skip. This selection and execution proceeds
until there are no reactions enabled, then normal processing
resumes. Thus, reactions are executed as if they belonged to
a separate reactive program which is run to £xed point after
each non-reactive statement. Blocking operations are not al-
lowed in s, as they may prevent the program from reaching
£xed point.

The full form of a reaction is annotated with locations,
as in R[ω, λ](s, p), where the location parameters have the
same meaning as discussed for in and rd. However, these
kinds of reactions, called strong reactions, are not allowed
over the entire federated tuple space; in other words, the
current location £eld must always be restricted to a host or
agent. The reason for this lies in the constraints introduced
by physical mobility. When multiple hosts are present, the
content of the federated tuple space depends on the content
of the tuple spaces belonging to physically distributed, re-
mote agents. Thus, maintaining the requirements of atomic-
ity and serialization imposed by strong reactive statements
would require a distributed transaction encompassing sev-
eral hosts for every tuple space operation on any ITS—very
often, an impractical solution.

For these reasons, LIME also provides a notion of weak
reaction. Weak reactions are used primarily to detect
changes in the federated tuple space. In this case, the host
where the pattern p is successfully matched to a tuple, and
the host where the corresponding action s is executed may
be different. Processing of a weak reaction proceeds as in
the case of strong reactions, except that the execution of
s does not happen atomically with the detection of a tuple
matching p: instead, it is guaranteed to take place eventu-
ally after such condition, if connectivity is preserved.

2.2. Programming with LIME

We conclude the presentation of the LIME model by
brie¤y commenting upon the programming interface that is
provided in the current implementation of LIME.

The class LimeTupleSpace, shown3 in Figure 2, em-
bodies the concept of a transiently shared tuple space. Only
the thread of the agent which creates the tuple space is al-
lowed to perform operations on the LimeTupleSpace
object; accesses by other threads fail by returning an ex-
ception. This represents the constraint that the ITS must be
permanently and exclusively attached to the corresponding
mobile agent.

In LIME, agents may have multiple ITSs distinguished by
a name, which is the parameter for the LimeTupleSpace
constructor. The name determines the sharing rule; only
tuple spaces with the same name are transiently shared. An

3Exceptions are not shown for the sake of readability.

public class LimeTupleSpace {
public LimeTupleSpace(String name);
public String getName();
public boolean isOwner();
public boolean isShared();
public boolean setShared(boolean isShared);
public static boolean

setShared(LimeTupleSpace[] lts, boolean isShared);
public void out(ITuple tuple);
public ITuple in(ITuple template);
public ITuple rd(ITuple template);
public void

out(AgentLocation destination, ITuple tuple);
public ITuple

in(Location current, AgentLocation destination,
ITuple template);

public ITuple
inp(Location current, AgentLocation destination,

ITuple template);
public ITuple

rd(Location current, AgentLocation destination,
ITuple template);

public ITuple
rdp(Location current, AgentLocation destination,

ITuple template);
public RegisteredReaction[]

addStrongReaction(LocalizedReaction[] reactions);
public RegisteredReaction[]

addWeakReaction(Reaction[] reactions);
public void

removeReaction(RegisteredReaction[] reactions);
public boolean

isRegisteredReaction(RegisteredReaction reaction);
public RegisteredReaction[] getRegisteredReactions();

}

Figure 2. The class LimeTupleSpace, representing a
transiently shared tuple space.

example of keeping information of different tasks and roles
separated in multiple tuple spaces is shown in Section 4.

Agents may have also private tuple spaces, i.e., not sub-
ject to sharing. A private LimeTupleSpace can be used
as a stepping stone to a shared data space, allowing the
agent to populate it with data prior to making it publicly
accessible, or it can be useful as a primitive data structure
for local data storage. All tuple spaces are initially created
private, and sharing must be explicitly enabled by calling
the instance method setShared. The method accepts a
boolean parameter specifying whether the transition is from
private to shared (true) or vice versa (false). Calling
this method effectively triggers engagement or disengage-
ment of the corresponding tuple space. Sharing properties
for multiple tuple spaces owned by the same agent can also
be changed in a single atomic step.
LimeTupleSpace contains also the Linda operations

needed to access the tuple space, as well as their variants
annotated with location parameters. The only requirement
for tuple objects is to implement the interface ITuple,
de£ned in a separate package providing a lightweight im-
plementation of a tuple space. As for location parame-
ters, LIME provides two classes, AgentLocation and
HostLocation, which extend the common superclass



Location by enabling the de£nition of globally unique
location identi£ers for hosts and agents. Objects of these
classes are used to specify different scopes for LIME oper-
ations. Thus, for instance, a probe inp(cur,dest,t)
may be restricted to the tuple space of a single agent if cur
is of type AgentLocation, or it may refer the whole
host-level tuple space, if cur is of type HostLocation.
The constant Location.UNSPECIFIED is used to al-
low any location parameter to match. Thus, for instance,
in(cur,Location.UNSPECIFIED,t) returns a tu-
ple contained in the tuple space of cur, regardless of its £-
nal destination, including also misplaced tuples. Note how,
in the current implementation of LIME, probes are always
restricted to a local subset of the federated tuple space, as
de£ned by the location parameters. An unconstrained de£-
nition, like the one provided for in and rd, would involve
a distributed transaction in order to preserve the semantics
of the probe across the federated tuple space.

All the operations retain the same semantics on a private
tuple space as on a shared tuple space, except for blocking
operations. Since the private tuple space is exclusively as-
sociated to one agent, the execution of a blocking operation
when no matching tuple is present would suspend the agent
forever, effectively waiting for a tuple that no other agent is
allowed to insert.

The remainder of the interface of LimeTupleSpace
is devoted to managing reactions; other relevant classes for
this task are shown in Figure 3. Reactions can either be of
type LocalizedReaction, where the current and desti-
nation location restrict the scope of the operation, or Ubiq-
uitousReaction, that speci£es the whole federated tu-
ple space as a target for matching. The type of reactions
is used to enforce the proper constraints on the registration
through type checking. These classes have the abstract su-
perclass Reaction in common, which de£nes a number
of accessors for the properties established on the reaction
at creation time. Creation of a reaction is performed by
specifying the template that needs to be matched in the tu-
ple space, a ReactionListener object that speci£es the
actions taken when the reaction £res, and a mode. The Re-
actionListener interface requires the implementation
of a single method reactsTo that is invoked by the run-
time support when the reaction actually £res. This method
has access to the information about the reaction carried by
the ReactionEvent object passed as a parameter to the
method. The reaction mode can be either of the constants
ONCE and ONCEPERTUPLE, de£ned in Reaction. ONCE
speci£es that the reaction is executed only once and then
deregistered in the same atomic step. When ONCEPERTU-
PLE is speci£ed, the reaction remains registered but it never
executes twice for the same tuple.

Reactions are added to the ITS by calling either
addStrongReaction or addWeakReaction. Only

public abstract class Reaction {
public final static short ONCE;
public final static short ONCEPERTUPLE;
public ITuple getTemplate();
public ReactionListener getListener();
public short getMode();
public Location getCurrentLocation();
public AgentLocation getDestinationLocation();

}
public class UbiquitousReaction extends Reaction {

public UbiquitousReaction(ITuple template,
ReactionListener listener,
short mode);

}
public class LocalizedReaction extends Reaction {

public LocalizedReaction(Location current,
AgentLocation destination,
ITuple template,
ReactionListener listener,
short mode);

}
public class RegisteredReaction extends Reaction {

public String getTupleSpaceName();
public AgentID getSubscriber();
public boolean isWeakReaction();

}
public class ReactionEvent

extends java.util.EventObject {
public ITuple getEventTuple();
public RegisteredReaction getReaction();
public AgentID getSourceAgent();

}
public interface ReactionListener

extends java.util.EventListener {
public void reactsTo(ReactionEvent e);

}

Figure 3. The classes required for the de£nition of reac-
tions on the tuple space.

LocalizedReaction can be passed to the former, as
prescribed by the LIME model. All the reactions passed
as a parameter are registered in a single atomic step, i.e.,
processing of reactions takes place only after all reactions
have been inserted in the LimeTupleSpace, and yet be-
fore any other operation takes place on it. The latter does
not provide such a guarantee, as weak reactions could be
spread on multiple hosts and thus enforcing the property
above would entail a distributed transaction among all the
hosts involved. Registration of a reaction in any case re-
turns an object RegisteredReaction, that can be used
to deregister a reaction with the method removeReac-
tion, and provides additional information about the regis-
tration process. The decoupling between the reaction used
for the registration and the RegisteredReaction ob-
ject returned allows for registration of the same reaction on
different ITSs, or to register the same reaction with a strong
and then subsequently with a weak semantics.

3. Design and Implementation of LIME

In this section we look behind the scenes of the LIME

programmer interface, providing some insights about the



internal structure of the lime package and of the associ-
ated run-time support. The presentation proceeds through
increasing levels of complexity, £rst describing how the
simple notion of a private, non-shared tuple space is made
available through the LimeTupleSpace class. We then
describe the components that enable the local transient shar-
ing that determines a host-level tuple space and £nally we
show how the illusion of a federated tuple space enabling
transient sharing across remote hosts is provided.
Private Tuple Space. A private tuple space simply pro-
vides a Linda tuple space which is permanently attached
to an agent. The agent enjoys exclusive access to the tu-
ple space and can leverage off the strong reaction feature of
LIME. Furthermore, since the private tuple space can later
be shared, support for operations annotated with tuple lo-
cation parameters is also provided. This core functionality
is supported by two objects that belong to every LimeTu-
pleSpace: ITupleSpace and Reactor. The £rst pro-
vides all standard Linda operations while the second man-
ages the registered reactions as well as the execution of the
reactive program.

One of the early decisions in the design of LIME ad-
dressed the implementation of the core tuple space support.
Analysis of available systems revealed that they provide a
rich set of features with large variations in terms of expres-
siveness, performance, and often semantics. The need for a
simple, lightweight implementation, combined with the de-
sire to provide support and interoperability with industrial-
strength products, led us to the development of an adapta-
tion layer that hides from the rest of the LIME implementa-
tion the nature of the underlying tuple space engine. This
layer is provided by a separate package called LIGHTS, de-
veloped by one of the authors. ITupleSpace, together
with the already mentioned ITuple, and IField, are the
interfaces that provide access to the core tuple space func-
tionality. Adapter classes implementing these interfaces are
loaded at startup to translate operations into those of the
supported tuple space engines. Currently, adapters exist for
our lightweight tuple space and for IBM’s TSpaces [3].

To support tuple locations, a design decision was made
to explicitly augment each tuple within LIME with two loca-
tion £elds, but, at the same time, to hide this internal repre-
sentation from the application programmer. The user main-
tains access to and control over the location information
only through extended LimeTupleSpace operations.

The other key component of the LimeTupleSpace is
the Reactor object which contains the list of registered
reactions which make up the reactive program. The current
implementation supports reactions to changes in state and
not to the mere occurrence of an operation. This means
that execution of the reactive program must be triggered
only when the content of the tuple space changes, i.e., as
part of the execution of the out method of the Lime-

TupleSpace. To evaluate the reactive program to £xed
point after every such change, the list of reactions is cy-
cled through in a round robin fashion until no reaction is
enabled. To avoid evaluating a reaction needlessly over the
same tuples on each iteration of the reactive program, our
Reactor adopts an optimized strategy that, during execu-
tion of the reactive program, separates the tuples written to
the tuple space as a consequence of the £ring of a reaction
from those that have already been checked, thus avoiding
looking at the same tuple more than once per evaluation
of a reaction. While this complicates the management of
the tuple space during the evaluation of reactions, this con-
cern is outweighed by its advantages, especially during the
processing of ONCEPERTUPLE reactions which, as will be
seen in Section 4, are a major asset during development.

Host-Level Tuple Space. Transient sharing of a LimeTu-
pleSpace object is under the explicit control of the agent
that creates it. Once sharing is turned on, a host-level tuple
space is created. In order to properly enforce the seman-
tics of transient sharing and to take into account engage-
ment and disengagement of local tuple spaces, implementa-
tion of the host-level tuple space abstraction requires host-
wide management of tuple space access. This management
is provided by instances of the class LimeTSMgr. At run-
time, a LimeTSMgr object is created when the £rst Lime-
TupleSpace instance with a given name is engaged. Sub-
sequent engagements of LimeTupleSpace objects with
the same name refer to the same LimeTSMgr.

Upon local engagement of a given tuple space, the
LimeTupleSpace object surrenders the control of its
own ITupleSpace object. Thus, the implementation of
the methods providing access to the tuple space no longer
operate directly on the ITupleSpace. Instead, operation
requests are forwarded to the corresponding LimeTSMgr,
and the calling agent is suspended, waiting for the result.
Operation requests are queued and serially executed at the
LimeTSMgr, which runs in a separate thread of control.
This way, synchronization among concurrent accesses per-
formed through different LimeTupleSpace instances is
obtained structurally, by con£ning all tuple space accesses
to a synchronized queue.

In the current implementation during engagement, not
only does the LimeTupleSpace surrender control of its
tuple space, but the content of the ITupleSpace object
is physically merged into another ITupleSpace object
associated with the LimeTSMgr. This latter object is a
concrete representation of the host-level tuple space. Sim-
ilarly, the reactive statements of each LimeTupleSpace
instance are moved into a Reactor object associated with
the LimeTSMgr. This design choice optimizes for tu-
ple queries, and due to the movement of data this solution
is most appropriate when con£guration changes are infre-
quent. Experiences with logical mobility applications have



led us to consider the alternate solution of keeping tuples
and reactions associated with the LimeTupleSpace, and
allowing the LimeTSMgr to reference them. Future plans
include extending our run-time support to allow the appli-
cation designer to choose the most appropriate scheme.

In contrast to the private LimeTupleSpace, blocking
operations are enabled on shared tuple spaces. In the case
where a matching tuple is found immediately, no special
processing is necessary and the LimeTSMgr releases the
agent with the appropriate result (identical to the process-
ing of a non-blocking operation). If no matching tuple ex-
ists, a mechanism is needed to detect when a matching tuple
shows up, and to notify and release the waiting agent. The
realization that this kind of processing is somehow reac-
tive led to a solution that exploits the notion of reaction not
only as part of the programming interface, but also as a core
element of system design. Speci£cally, for each blocking
operation that does not £nd immediately a matching tuple,
a strong reaction with the speci£ed template is created with
a system-de£ned ReactionListener. This listener is
called just as any other LIME reaction listener, that is, with
a ReactionEvent parameter containing the matching tu-
ple that triggered the reaction. In the case of a rd, the lis-
tener returns a copy of the matching tuple to the suspended
agent; in the case of an in, the matching tuple is £rst re-
moved from the host, then returned to the waiting agent.

Federated Tuple Space. While the ultimate target environ-
ment for LIME is an ad hoc network where mobile hosts
may move arbitrarily and mobile agents can roam among
them, we recognize that such an ambitious task is likely to
fail if not backed up by an initial evaluation of the prim-
itives chosen. For this reason, our £rst version of LIME

is based on a more constrained scenario that allowed us to
quickly develop a £rst implementation and gather feedback
from applications. We assume two basic properties of the
underlying network. First, hosts announce their intentions
to join and leave the LIME community of hosts. This allows
us to control the engagement and disengagement processes
without concerning ourselves with the possibilities of data
loss due to sudden disconnection in the middle of a remote
operation. Second, a LIME community is created by hosts
joining and leaving one at a time. In other words, we do not
yet support the engagement of two distinct LIME communi-
ties. Further, all hosts must be able to receive multicast and
unicast messages from all other hosts in the community.

The management of system con£guration changes is key
to moving from the host-level to the federated tuple space.
To ensure that all hosts maintain consistent views of the
community members, engagement and disengagement are
implemented as community-wide transactions which are
managed by a dynamically elected leader. A transaction
is triggered by a multicast message from the initiator, to all
members of the community. Upon receipt of this message,

each host locally prepares for the transaction and informs
the leader of its readiness. When all hosts are ready, the
leader begins the transaction, initiating, for an engagement,
the exchange of misplaced tuples and weak reactions, and,
for both engagement and disengagement, the updating of
the LimeSystem tuple space.

The mechanisms to support weak reactions in the fed-
erated environment exploit the strong reaction mechanism.
When a weak reaction is registered, the programmer’s Re-
actionListener object is stored by a weakReac-
tionMgr object. A system-de£ned strong reaction is reg-
istered with the reactor of each of the hosts potentially in-
volved in the weak reaction. When the strong reaction
£res, either local or remote with respect to the subscriber,
a message containing the ReactionEvent is passed to
the weakReactionMgr and the user’s ReactionLis-
tener is executed. In the case of a ONCE reaction, we must
be careful to execute the ReactionListener only one
time, even though multiple matching tuples may be returned
from different hosts in the system.

The processing of remote, blocking tuple space opera-
tions exploits the weak reaction mechanism at the feder-
ated level much the way the blocking operations are han-
dled at the host-level. A remote blocking rd is identical
to a ONCE, weak reaction with a system de£ned Reac-
tionListenerwhich releases the blocked agent with the
matched tuple. A remote blocking in is slightly more com-
plex. First, a weak reaction is used to identify a host where
a matching tuple exists. Second, an inp is performed on
that host to attempt to retrieve the tuple. If the inp returns
a tuple, the agent is released, but if no tuple is returned, the
agent continues to wait.
Details about the Current Implementation. Communi-
cation is completely handled at the socket level, requiring
no support for RMI or other communication mechanisms.
The lime package is roughly 5,000 non-commented source
statements, resulting in an approximately 100 Kbyte jar
£le. The lighTS lightweight tuple space implementation
and the adapter for integrating multiple tuple space engines
adds an additional 20 Kbyte of jar £le.

4. Developing Mobile Applications with LIME

Application development is the last phase of our research
strategy, and the one where the abstractions inspired by for-
mal modeling and embodied in the middleware are evalu-
ated against the real needs of practitioners. In this section
we present two applications that exploit the current imple-
mentation of LIME in a setting where physical mobility of
hosts is enabled. The £rst one involves the ability to per-
form collaborative tasks in the presence of disconnection,
while the second one revolves around the ability to detect



Figure 4. ROAMINGJIGSAW. The left image shows the
view of a disconnected player which is able to assemble
only pieces it selected. The right image shows the view
after the player re-engages with the other players, seeing
assemblies that occurred during disconnection.

changes in the system con£guration.

4.1. ROAMINGJIGSAW: Accessing Shared Data

Scenario. Our £rst application, ROAMINGJIGSAW as
shown in Figure 4, is a multi-player jigsaw assembly game.
A group of players cooperate on the solution of the jigsaw
puzzle in a disconnected fashion. They construct assem-
blies independently, share intermediate results, and acquire
pieces from each other when connected. Play begins with
one player loading the puzzle pieces to a shared tuple space.
Any connected player sees the puzzle pieces of the other
connected players and can select pieces they wish to work
with. When a piece is selected, all connected players ob-
serve this as a change in the colored border of the piece, and
within the system, the piece itself is moved to be co-located
with the selecting player. When a player disconnects, the
workspace does not change, but the pieces that have been
selected by the departing player can no longer be selected
and manipulated. From the perspective of the disconnected
player, pieces whose border is tagged with the player’s color
can be assembled into clusters. When a player reconnects,
she becomes able to further redistribute the pieces, and to
view the progress made by the other players with respect to
any clusters formed since last connected.

This application is based on a pattern of interaction
where the shared workspace provides an accurate image of
the global state of connected players but only weakly con-
sistent with the global state of the system as a whole. The
user workspace contains the last known information about
each puzzle piece.

ROAMINGJIGSAW is a simple game that exhibits the
characteristics of a general class of applications in which
data sharing is the key element. This design strategy may
be adapted easily to any applications in which the data be-
ing shared may change, e.g., sections of a document in a
collaborative editing application or paper submissions to be

evaluated by a program committee.
Design and Implementation. The basic data element of
ROAMINGJIGSAW is the puzzle piece. When a player se-
lects a piece or joins together several pieces, a new tuple for
the new piece is written and the old pieces are removed.

Critical operations are the detection of piece selection
and assembly, the reconciliation on reconnection, and the
engagement of a new player, all of which are handled by
exploiting a single weak reaction with mode ONCEPER-
TUPLE and type UbiquitousReaction whose scope
is the whole federated tuple space. The reaction is regis-
tered for puzzle piece tuples and the reaction listener up-
dates the user workspace with the information in the new
puzzle piece, thus correctly maintaining the weakly con-
sistent view of the workspace. Since the reaction is regis-
tered on the federated tuple space, the program receives up-
dates about new descriptors without any need to be explic-
itly aware of the arrival and departure of players. Thus, the
programming effort can focus just on handling data changes
without worrying about the actual system con£guration.

Although all processing described thus far operates on
the federated tuple space, £ne-grained control over the lo-
cation of tuples is critical in dealing with disconnections. To
ensure that a player has access to the pieces it selects even
after a disconnection, piece selection actually moves the tu-
ples into the local tuple space of the player. In addition,
since we deal with a weakly consistent workspace, a player
must be prevented from selecting a piece that is currently
not present in the federated tuple space. For this reason the
implementation uses the inp operation on the tuple space
of the player last known to have the piece. If the piece is
returned, it is properly moved to the local tuple space of the
new owner, and the selection is successful. If no tuple is
returned, it means that the piece is unavailable for selection.

4.2. REDROVER: Detecting Changes in Context

Scenario. Our second target application is a spatial game
we refer to as REDROVER in which individuals equipped
with small mobile devices form teams and interact in a
physical environment augmented with virtual elements.
This forces the participants to rely to a great extent on infor-
mation provided by the mobile units and not solely on what
is visible to the naked eye.

REDROVER is the initial step in the development of a
suite of virtually augmented games to be carried out in the
real physical world. Currently, the game is limited to seek-
ing the physical ¤ag of another team and clustering around
the player who £nds the ¤ag. Each player is equipped with
a digital camera which can be used to share a snapshot of
the current environment with team members who may be
separated physically by walls or other barriers, but remain
within radio communication range. Finally, players know



Figure 5. REDROVER. The main console of REDROVER,
and the most recent camera image of a connected player.

and share their precise location in space so that all con-
nected players can maintain an image of the playing £eld
displaying the relative location of all participants

As with ROAMINGJIGSAW, REDROVER is a simple
game but it has potential to be extended to real world scenar-
ios such as the exploration of an unknown area by a group
of people or robots.
Design and Implementation. The dominant feature of the
user display is the current location of each connected player
within the playing £eld. This is maintained in a strongly
consistent manner, i.e., by displaying precisely the players
which are connected and their most recent location update.
Each time a player moves, a tuple representing its location
is written to the federated tuple space. All players register a
weak ONCEPERTUPLE ubiquitous reaction for these tuples
and the screen is updated with each reaction.

To detect a player disconnection, we make use of the
LimeSystem tuple space and register a reaction for the de-
parture of a player (represented by a host). The listener of
this reaction changes the connected status of the player and
the user display is updated to replace the standard image of
the player with a “ghost image” indicating that the player
was once present, but is no longer connected. Similarly,
when a host reconnects, a reaction on the LimeSystem tu-
ple space £res to indicate its arrival and a query is done to
the tuple space to determine its location.

An important feature of REDROVER is the separation of
data to be shared with teammates versus information avail-
able to all game players. For example, it is desirable to
inform only team members of the ¤ag capture. Therefore,
this information is written to a team-only tuple space, while
general information, such as player location, is written to a
separate game tuple space.

5. Discussion

In this section we discuss our research contributions with
an emphasis on lessons learned from exploiting LIME in the
mobile applications presented in the previous section. We

also compare LIME to similar projects found in literature.
Re¤ections and Lessons Learned. The development of
LIME is the result of a continuous interplay among the def-
inition of the underlying formal model, the design and im-
plementation of the middleware, and its evaluation on mo-
bile applications. The development of a model for LIME,
and its formalization, favored a better understanding of the
abstractions provided by the middleware. In particular, by
keeping the programming interface as close as possible to
the operations de£ned in the formal model, we made it easy
to communicate and reason about the functionality of the
system and its use in applications. The ability to think about
abstractions in a setting unconstrained by implementation
details favored a style of investigation characterized by a
more radical perspective, where the decisions driving the
modeling and the de£nition of the main abstractions where
mostly determined by the need for expressiveness and com-
pleteness.

This view was greatly re£ned when we started the de-
sign and implementation of the middleware. An example
of re£nements that took place is provided by the notion of
reaction which was motivated by the reactive statements of
Mobile UNITY, but which proved too strong to be reason-
ably implemented. Other re£nements were the result of un-
foreseen needs on the part of the application programmer, as
was the case with the reaction mode. Speci£cally the ON-
CEPERTUPLE mode turned out to be an important mecha-
nism in both REDROVER and ROAMINGJIGSAW.

Using LIME for application development made it possi-
ble for us to evaluate the usefulness of its programming ab-
stractions and constructs. Our experiences corroborated the
hypothesis that weak reactions on the federated tuple space
provide the programmer with a highly effective construct
that simpli£es programming. The execution of a single op-
eration is suf£cient to guarantee future noti£cation of every
event occurring over the whole federated tuple space, inde-
pendently of changes in the con£guration. Interestingly, this
power has a cost; the implementation of weak reactions is
probably the most complicated portion of the current LIME

software—this should be expected, since we are shifting a
great deal of complexity away from the programmer and
into the run-time support.

Another interesting byproduct of these empirical evalua-
tions is an understanding of the programming and architec-
tural styles fostered by LIME and recurring in mobile appli-
cations. Interestingly, in one of the applications its function-
ality must be provided despite mobility, while in the sec-
ond case the functionality exists because of mobility. In this
and other application typologies, a recurring dilemma is be-
tween an application style that provides a weakly consistent
view of the system in the presence of mobility, and one that
provides a fully consistent view that takes into account de-
parture and arrival of mobile units. In our experience both



styles are naturally accommodated by the abstraction of a
transiently shared tuple space and use of the LimeSystem
tuple space. Our “developers”, mostly graduate and under-
graduate students, found it easy not only to program appli-
cations with LIME but, most importantly, to think about the
application in terms of the metaphors characteristic of the
underlying LIME model.

Actually, the particular programming style induced by
LIME, albeit biased by the limited range of applications
considered thus far, is quite different from what we initially
expected. This is especially true in the case of weak re-
actions and the LimeSystem tuple space. Reactive pro-
gramming was not part of the initial core of LIME which
was envisioned to be a coordination framework founded on
the idea of transiently shared tuple spaces accessible exclu-
sively through Linda operations. Similar circumstances sur-
rounded the LimeSystem. It was initially thought of as an
add-on to support very speci£c needs. Instead, these ab-
stractions turned out to play a key role in the design of both
ROAMINGJIGSAW and REDROVER. We already reported
about the use of weak reactions and ONCEPERTUPLE and
we noted that the LimeSystem tuple space provides full
context awareness by exposing changes in the con£guration
of the system.
Related Projects. LIME is not alone in its exploitation of
the decoupled nature of tuple spaces for the coordination
of mobile components. The Limbo platform [1] for qual-
ity of service communication among mobile hosts offers a
universal tuple space which registers all tuple spaces, a no-
tion similar to the LimeSystem tuple space. The TuCSon
coordination model [6] for logically mobile Internet agents
provides a kind of transparent access to shared context by
giving programmers the ability to reference a tuple space
based on a partial name which is resolved to a local version
of the tuple space.

It is interesting to note how the notion of reaction put
forth in LIME is profoundly different from similar event no-
ti£cation mechanisms such as those provided by TuCSoN,
TSpaces [3], and Javaspaces [4]. In these systems, the de-
tected events are the actual operations performed on the tu-
ple spaces, while in LIME, reactions £re based on the state
of the tuple space itself. One other important difference is
the power of the atomicity guarantees of the LIME strong
reactions. For example, with a strong, local reaction, the
execution of the listener is guaranteed to £re in the same
state in which the matching tuple was found. No such guar-
antee can be given with an event model where the events are
asynchronously delivered.

6. Conclusions

LIME is our £rst attempt at designing middleware for
mobile systems based on the theme of coordination. The

notion of transiently shared tuple spaces is part of a larger
vision we refer to as global virtual data structures. This
concept starts with the notion of a global, persistent, shared
data structure accessible to all mobile agents but distributes
it among mobile components and provides operations for
sharing and manipulating the structure based on connec-
tivity. While the choice of sharing Linda tuple spaces has
proven useful, we anticipate applying this strategy to other
kinds of data such as graphs or trees. The operations and
semantics must be rede£ned, but the underlying notion of
transient sharing based on connectivity remains. Finally, we
are currently in the process of broadening our view of what
is necessary for successful mobile middleware. Clearly,
adaptability to different mobility scenarios is crucial and is
something we have not explored fully within the con£nes of
LIME. Experience to date has been instrumental in helping
us develop a new strategy for structuring the LIME middle-
ware and an effort is under way to achieve a multilayered
modular design that can be adapted to mobile hosts of vary-
ing capabilities and to the construction of middleware based
on a variety of coordination models.
Availability. LIME is currently being developed as an
open source project, available under GNU’s LGPL license.
Source code and development notes are available at lime.
sourceforge.net.
Acknowledgments. This paper is based upon work sup-
ported in part by the National Science Foundation (NSF)
under grant No. CCR-9624815. Any opinions, £ndings and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily re¤ect the views
of NSF.

References

[1] G. Blair, N. Davies, A. Friday, and S. Wade. Quality of Ser-
vice Support in a Mobile Environment: An Approach Based
on Tuple Spaces . In Proc. of the 5th IFIP Int. Wkshp. on
Quality of Service (IWQoS’97), May 1997.

[2] D. Gelernter. Generative Communication in Linda. ACM
Computing Surveys, 7(1):80–112, Jan. 1985.

[3] IBM. TSpaces Web page. http://www.almaden.ibm.
com/cs/TSpaces.

[4] JavaSpaces. The JavaSpaces Speci£cation web page. http:
//www.sun.com/jini/specs/js-spec.html.

[5] P. McCann and G.-C. Roman. Compositional Programming
Abstractions for Mobile Computing. IEEE Trans. on Software
Engineering, 24(2), 1998.

[6] A. Omicini and F. Zambonelli. Tuple Centres for the Coordi-
nation of Internet Agents. In Proc. of the 1999 ACM Symp.
on Applied Computing (SAC’00), February 1999.

[7] G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda Meets
Mobility. In D. Garlan, editor, Proc. of the 21st Int. Conf. on
Software Engineering, pages 368–377, May 1999.


