
INTEROPERATION



INTEROPERATION

 What programming model is better suited for 

interaction between components of volatile systems?

 Traditional systems: changes in the set of interoperating 

components are either long-term configuration issues or a 

runtime error condition to be handled occasionally

 Try to avoid the lost opportunity problem

 Global agreement between developers is necessary –

minimise what needs to be agreed upon

 Interface incompatibility problem

 Heterogeneous interfaces with interface adaptation

 Semantic interoperability is difficult and error prone

 Scale for N interface NxN adaptors are needed

 Acquisition and loading of adaptors?

 Standardisation (e.g. UNIX pipes, Web – HTTP)



DATA-ORIENTED PROGRAMMING (1)

 Data/content oriented programs: programs using 

an unvarying service interface

 In contrast to object-oriented

 Trade flexibility against robustness

 Compatibility checking restricted to type of data sent



COUPLING/DECOUPLING IN

COMMUNICATION

 Space coupling: the extent to which interacting 

partners need to know each other

 Time coupling: the extent to which interacting 

partners need to actively participate in the 

interaction at the same time

 Synchronisation coupling: the extent to which 

interacting partners need to block while the 

interaction is taking place

 Interaction in the main flow of control or not

 Removing coupling increases scalability and 

robustness against volatility



INTERACTION MODEL CLASSIFICATION (1)

 Message-passing
 Need for explicit handling 

of physical addressing, 
data marshalling and flow 
control

 Time and space coupling

 Consumer synchronisation 
coupling

 RPC/RMI
 Network transparency, but 

…
 Hides data marshalling, 

physical addressing and 
flow control

 Space, time and 
synchronisation coupling



INTERACTION MODEL CLASSIFICATION (2)

 Oneway messages

No reply, no 
success/failure 
notification

 Futures

Reply decoupled from 
call

Notifications
 Use callbacks

 Observer patterns

 Time and space coupling

 Synchronisation 
decoupling



INTERACTION MODEL CLASSIFICATION (3)

 Shared spaces

 Tuple space introduced by 
Linda

 Communication through 
insertion/removal of ordered 
tuples

 Operations: out (put in 
space), in (remove from 
space – 1 of n), read (read 
but not remove from space –
1 to n)

 Time and space decoupling

 Consumer synchronisation 
coupling

 Addition of asynchronous 
notifications

 Rendezvous in I3: decouple 
sending and receiving of 
messages



INTERACTION MODEL CLASSIFICATION (4)

 Message queuing 
 MOM – message 

oriented middleware

 Similar to a global 
tuple space with 
transactional, timing 
and ordering 
guarantees

 Point-To-Point queuing 
with 1-of-n semantics
 Similar to tuple space in 

but with FIFO retrieval

 Time and space 
decoupling

 Consumer 
synchronisation 
coupling
 Limited support for 

asynchronous message 
delivery 

 Scale limitations 
(additional interactions 
needed for providing the 
guarantees)



INTERACTION MODEL CLASSIFICATION (5)

 Publish/Subscribe

 Time, space and 

synchronisation 

decoupling



INTERACTION MODEL CLASSIFICATION (6)

 Push versus pull

 Periodic versus aperiodic

 Unicast versus multicast

 According to coupling



PUBLISH/SUBSCRIBE (1)

 Topic-based

 Message are published in topics or subjects

 Identifying topics with keywords

 Quite similar to group communication but with 

different aim (replication versus communication)

 Topics may be organised in hierarchies

 Systems may allow topic names with wildcards



PUBLISH/SUBSCRIBE (2)

 Content-based

 Classifying events according to their actual content

 Internal attributes or metadata

 Event subscription with filters (name-value pairs of 

properties and basic comparison operators)

 Complex subscription patterns by logical combination of filters

 Possibly event correlation: combinations of events

 Subscription patterns: string, template object, executable code



PUBLISH/SUBSCRIBE (3)

 Type-based

 Event matching on the basis of structure i.e. event 

types

 Integration with programming language, type safety 

(may be checked statically)

 Content filtering on the public attributes



PUBLISH/SUBSCRIBE (4)

 Topic-based publish/subscribe is rather static and 

primitive, but can be implemented very 

efficiently

 Content-based publish/subscribe is highly 

expressive, but requires sophisticated protocols 

that have higher runtime overhead

 One should generally prefer a static scheme 

whenever a primary property ranges over a 

limited set of possible discrete values with 

additional expressiveness by content-based filters 

in the context of statically configured topics



PUBLISH/SUBSCRIBE (5)

 Implementation issues
 Events: messages or invocations

 Message: header and payload, 

 Header: message identifier, issuer, priority, or expiration time 
– interpreted by the system or serve as information for the 
consumers 

 Payload: opaque byte array, or set of message types (text, 
XML), or self-describing messages

 Invocations: typically one-way, values for invocation arguments 
and filtering

 Media: architecture and dissemination
 Architecture: centralised, decentralised, distributed network of 

servers (hierarchical, message broker graph)

 Dissemination: unicast or multicast 

 Dissemination-based systems – selective event routing

 Quality of service
 Persistence (storage and replay), Priorities (in transit 

messages), Transactions (atomic delivery of groups of 
messages), Reliability (guaranteed delivery)



PUBLISH/SUBSCRIBE FOR MOBILITY (1)

 Centralised architecture

 Performance bottleneck 
and single point of failure

 Mobile adaptation
 Broker on a separate 

computer with fixed network 
connectivity

 Allows for more 
resources, Autonomy 
from subscribers, Allows 
for storage and repeated 
transmission of events, 
Allows for continuous 
connectivity in the light 
of disconnection, Keep 
the system running in 
the light of network 
disconnection

 ED disconnection: EB 

store and selective 

discard or aggregate

 ES disconnection: ES 

store but selective 

discard impossible 

without knowledge of 

subscriptions

 Ad-hoc networks

 EB election and 

periodic re-subscription

 Quenching 



PUBLISH/SUBSCRIBE FOR MOBILITY (2)

 Distributed architecture

 With broadcast

 Subscription divided 

between EBs

 EBs connected into a graph 

(e.g. hierarchical)

 ES connect to the closest 

EB that is responsible to 

pass events to all others 

(broadcast or forwarding 

tree)

 With multicast

 Pruning of forwarding trees 

with selective forwarding



PUBLISH/SUBSCRIBE FOR MOBILITY (3)

 Mobile adaptation
 ED re-connection 

 Requires EB to update forwarding tree (request 
subscriptions) and forward stored messages

 ED resubmits subscription but new EB contacts the old 
to cancel

 Avoid duplicate delivery – keep log of connections and event 
ids

 Base station handoff may be utilised

 Ad-hoc networks

 Wireless connectivity for event propagation

 Building publish/subscribe trees (one for each EB)

 Replication

 Consistency problems: duplicates, out of order events

 Ordered-ness, Consistency, Completeness



PUBLISH/SUBSCRIBE FOR MOBILITY (4)

 Broadcasting in MANETs

 Broadcast storm problem: redundant broadcasts, 

broadcast contention, broadcast collisions

 Solutions: reduce the possibility of redundant 

broadcasts and differentiating the timing of 

rebroadcasts

 Probabilistic: broadcast with a certain probability, 

introduce small random delay before rebroadcast

 Counter-based: wait for a small random period before 

rebroadcast but count the number of times a message 

is received and do not rebroadcast beyond a certain 

threshold



PUBLISH/SUBSCRIBE FOR MOBILITY (5)

 Distance-based: when receiving a message check the 

distance of the broadcaster and if below a threshold 

then do not re-broadcast, otherwise follow above but 

keep note of receiving it again

 Distance from signal strength

 Distance threshold = signal strength threshold

 Location-based: similar as above but keep track of 

area of coverage being is below a threshold

 Location from GPS

 Difficulty in calculating coverage areas, but there are 

efficient approximations using convex polygons



PUBLISH/SUBSCRIBE FOR MOBILITY (6)

 Cluster-based: organise nodes into clusters and only 

cluster heads or gateways rebroadcast using one of 

the above schemes

 Clusters formed on basis of unique node ids and broadcast

 Lowest id is cluster head, nodes that can see multiple 

cluster heads are gateways

 Counter-based schemes are good when node density 

is high

 Location-based schemes work best



PUBLISH/SUBSCRIBE FOR MOBILITY (7)

 Beside physical mobility there could also be 
logical mobility, i.e. location dependent 
subscriptions

 Supporting logical mobility with location-
dependent filters

 Over “normal” publish/subscribe – keep track of 
location and un-subscribe/subscribe when there is a 
change, but suffers from blackout periods
 Flooding can remove blackout periods but is very inefficient

 Over “normal” publish/subscribe – using a movement 
graph to put predictive subscriptions for possible 
future locations and virtual counterpart broker to 
accommodate physical movements
 Adapt the scope of locations considered according to 

movement speed for improved performance



DATA-ORIENTED PROGRAMMING (2)

 Events systems

 Fixed generic interface for publishers to publish 

structured data (events) and subscribers to receive 

events

 Physical or logical scope for event delivery

 Natural paradigm for announcing and handling 

changes in volatile systems

 Composite events

 Requires agreement on the event service and the 

syntax and semantics of events

 Indirect association

 Event service scoping



DATA-ORIENTED PROGRAMMING (3)

 Tuple spaces

 Fixed generic interface to add and retrieve structured 

data (tuples) from a tuple space

 Agreement about tuple structure and values

 Matching with wildcards (*, ?)

 Systems

 Event heap per iRoom

 LIME (no infrastructure)

 Maintenance of consistency with unrealistic assumptions 

(serialised and orderly connections and disconnections, 

uniform multicast connectivity during tuple space 

aggregation)



TUPLE SPACES (1)

 Basic Linda model

 out(t), in(p), rd(p) and eval(dynamic process creation 

and deferred evaluation of tuple fields)

 Extension with probes: inp(p), rdp(p)

 Lime (Linda In a Mobile Environment)

 Interface Tuple Space engagement/ disengagement 

into Federated Tuple Space

 Private tuple spaces



TUPLE SPACES (2)

 Context aware operators

 out[l](t): (1) out(t) in ITS w, (2) when l engages, then move t 

from w to l

 in[w, l] & rd[w, l]

 LimeSystem tuple space

 Reactions R(s, p): execute code s when a tuple matching p is 

found

 At every operation try all reactions in an arbitrary order 

– fixed point execution

 Strong reactions R[w, l](s, p) (only on host or agent to 

ensure atomicity and serialisation)

 Weak reactions for the whole tuple space – eventual 

execution

 Once or once per tuple reactions



TUPLE SPACES (3)

 MARS (Mobile Agent Reactive Spaces)

 Agent coordination models

 Client-Server Model (time and space coupling)

 Meeting-Oriented Model (time coupling)

 Blackboard-based Model (space coupling)

 Linda-like model (time and space decoupling)

 Each host has a base level tuple space and an associated 

meta-level tuple space

 Programmable Tuple Spaces: tuple space access 

events trigger certain computational activities

 Tuples are Java objects whose instance variables represent 

tuple fields, each tuple field is a reference to an object



TUPLE SPACES (4)

 Operations: write (out), read, take (in), readAll and takeAll

 Transaction and timeout parameters, lease parameters 

for write

 Reactions (Rct, T, Op, I): Rct operation invoked when agent 

I carries out operation Op on tuple matching T – meta-level 

tuple space

 Reaction execution in order of insertion

 Pipeline of matching reactions for each matching tuple

 Access to base tuple space does not issue reactions

 Security model

 Agent roles: Reader (only read), Writer (read, write, only 

take its own), Manager (all operation including the meta-

level tuple space)



TUPLE SPACES (5)

 TeenyLIME: a wireless sensor network middleware
 Each node has a tuple space and can also see the tuple spaces 

of all nodes one-hop away

 Operations: out, in, rd, rdg (rd all), ing (in all) – all future-like 
invocations (tupleReady event)

 Sensed data and actuated commands as tuples

 tupleReady can also trigger reactions

 Flag to indicate reliable or best-effort operations

 System data also take the form of tuples

 Custom matching semantics on a per-field basis for data 
filtering

 Time divided into epochs attached to tuples (freshness as a 
parameter in matching, check the epochs passed since tuple
creation, tuple expiry of a number of epochs)

 Capability tuples to reduce unnecessary data tuple creation

 Remote reaction managed with soft state

 Matching of capability tuples with reactions

 Reliable operations with retransmission and 
acknowledgements piggy-backed on application messages



TUPLE SPACES (6)

 Evolving tuples (a tuple space for pervasive 

computing)

 Decoupling fields from their order by using names for 

the fields

 Associate formulas to fields with access to tuple 

context (evolution context tuple – externally provided 

information of the current environment)

 Formula: names of sibling fields, names of evolution context 

fields, executable behaviour (common arithmetic and 

boolean operators and if else statement)

 Evolution performed by evolve operations in a 

specific evaluation order that produces new tuples



TUPLE SPACES (7)

 Geo-Linda: geometry aware distributed tuple 

space

 Geometric addressing: associate a volume (sphere, 

cone, cylinder, box, sector and point) to each tuple 

and a volume to each read operation

 Matching requires intersection of volumes that requires 

precise location information

 Detecting movement patterns

 out (s, t), drop(t), read(s, p), take(s, p), readOnce(s, p), 

lostOne(s, p)



DATA-ORIENTED PROGRAMMING (4)

 Event – Tuple, Specification of interest – Tuple 

matching template

 Space decoupling, Time(?)

 Tuples are persistent (may grow uncontrollably, but 

expiration after activity time span)

 Synchronisation decoupling versus coupling



DATA-ORIENTED PROGRAMMING (5)

 Direct device interoperation

 JetSend
 No need for special drivers

 Synchronize: central, generic operation – transferring state 
in a negotiated format

 Only supports simple data transfer

 More complex interactions supported with user input 
through target device interfaces rendered on source 
device

 Web like interoperation

 Speakeasy
 Similar functionality utilising mobile code

 Devices can send user interface to PDAs (input 
validation, interactivity) – security and resource 
implications 

 Data transfer optimisation (e.g. Compression)



INDIRECT ASSOCIATIONS AND SOFT STATE

 Explicit association only makes sense for well resources 
services

 It is useful for programmers to know which services are highly 
available and which are volatile
 Space decoupling helps

 Intentional Name System: requests specify the attributes of the 
required service, the operation to be invoked and its parameters, not 
the name or address of an instance of it
 Automatic routing

 Assumes stateless servers!

 Maintaining state in volatile systems
 Replication – yes, but assumes redundant resources and extra 

communication

 Algorithms that rely on access to persistent store

 Soft state: data that provides a hint and is automatically updated by 
the sources of soft state
 Discovery services: registrations as hints with automatic updates through 

multicast

 XML? – Semantic Web!


