
Geo-Linda: a Geometry Aware Distributed Tuple Space

Julien Pauty
K.U. Leuven

Paul Couderc
INRIA

Michel Banâtre
INRIA

Yolande Berbers
K.U. Leuven

K.U. Leuven
Celestijnenlaan 200A

3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

INRIA
Campus de Beaulieu

35042 Rennes, France
firstname.lastname@irisa.fr

Abstract

This paper presents Geo-Linda, a physically distributed
tuple space. Geo-Linda targets ubiquitous computing ap-
plications involving the detection of movement patterns of
objects and people, such as the meeting of two people or
the insertion of a product in a shopping cart, the loading of
container in a boat. . . Existing distributed tuple spaces suf-
fer two main limitations: (1) they cannot detect precisely
movement patterns, leading to inconsistencies between the
state of applications and the physical world; (2) they can-
not detect several kinds of movement patterns. Geo-Linda
tackles these two limitations, by introducing a geometric ad-
dressing mode and two new reading operations to access
the tuple space. In this paper, we illustrate Geo-Linda with
several small examples and a full application.

1. Introduction

Ubiquitous computing [20] aims to provide users with a
seamless access to computing resources and services. To
this end, ubiquitous computing distributes in the physical
space computing and sensing capabilities. Ubiquitous com-
puting applications are used from the physical space and
linked to humans’ daily activities. This link to human activ-
ities implies that numerous applications are synchronized
on movement patterns of objects and people, such as: the
arrival of the user at a given location, the meeting of two
users, the insertion of a book in a book shelf, the stopping of
a bus. . . Applications synchronized on movement patterns
include: public transport applications [1, 6], electronic su-
permarkets [17] and hazard detection [18].

We distinguish two approaches to detect movement pat-
terns: the virtual approach and the physical approach. The
virtual approach relies on a localization and communication

infrastructure. The overall goal is to create a virtual model
of the physical world in a service platform and to analyze
this model in order to detect movement patterns. The virtual
approach implies that mobile peoples and objects regularly
update their location in the service platform, in order to keep
up the model consistent with the state of the physical world.
The virtual approach can raise a scalability problem: the
service platform delivers services to all users; if the number
of mobile objects and people is too large the service plat-
form becomes a bottleneck.

The physical approach detects movement patterns with
coordination protocols between people and objects. To this
end, people and objects carry wireless devices and commu-
nicate only with devices included in their communication
range; devices that are nearby. The rationale of the physi-
cal approach lies in the fact that movement patterns involve
coordination between neighboring devices and can be de-
tected without a global model of the physical world. For
example, a typical coordination protocol monitors the net-
work connectivity to detect meetings of devices: if the com-
munication range of the devices are adapted to the size of
their carrying entity, detecting a new device in the commu-
nication range consist in detecting a meeting with this de-
vice. The physical approach relies on local coordinations
and does not suffer from the scalability problem. In the rest
of this paper we focus on the physical approach.

Physically distributed tuple spaces have proved to be ef-
ficient to implement the physical approach. Such a tuple
space embeds a local tuple space on each device. The tuple
space viewed by a device A corresponds to the union of the
local tuple spaces of the devices included in A’s communi-
cation range. Movement patterns are reflected in the viewed
tuple space by tuple appearances and disappearances: when
a device enters in the communication range of A its tuples
are inserted in the visible space of A.

Despite their advantages, existing physically distributed

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

tuple spaces face two main limitations: (1) there are sev-
eral kinds of movement patterns that they cannot detect;
(2) they cannot detect precisely movement patterns, leading
to inconsistencies between the state of the physical world
and the state of the applications. In this paper, we present
Geo-Linda. Geo-Linda extends the notion of physically dis-
tributed tuple space, in order to detect precisely multiple
kinds of movement patterns.

Next section details the notion of physical synchroniza-
tion. A physical synchronization consists in synchronizing
an application on the occurrence of a movement pattern. We
will see that physically distributed tuple spaces are espe-
cially convenient to program such synchronizations. Sec-
tion 3 presents Geo-Linda. Geo-Linda relies on a geomet-
ric addressing mode to detect precisely movement patterns.
In order to detect new kinds of movement patterns, Geo-
Linda introduces two new reading operations. Section 4
presents an application programmed with Geo-Linda. Sec-
tion 5 presents the main implementation aspects and eval-
uation results. Before concluding, we present in section 6
related works.

2. Physical synchronization

2.1. Physically shared data space

A physically shared data space is distributed on several
wireless devices. Each device embeds a short range com-
munication interface which enables it to communicate with
other devices included in its communication range. We call
connected devices, the devices with which a device can
communicate. Each wireless device embeds a local data
space and can access to the data stored on devices located in
its communication area. Figure 1 shows an example shared
data space. We have three devices A, B and C, and each
device embeds data. A and C are located inside B’s com-
munication area, so the visible data space of B is the union
of A, B and C’s local space. Note that a shared data space
does not rely on an ad-hoc routing protocol: the visible data
tuple space of a device is the union of connected devices’
local data space.

The content of the visible data space of a device A re-
flects the arrivals and departures of devices from the A’s
communication area. When a device B enters in A’s com-
munication area, B’s data are added to A’s visible data
space. Conversely, when B leaves the communication are
of A, its data are removed from A’s visible data space.

Several systems propose such a mechanism of physi-
cally shared data space. PERSEND [19] relies on shared
databases: each device embeds a local database. Devices
access to their visible data space via continuous queries. A
continuous query is a standard query which remains active
in the database. A traditional continuous query is evaluated

"Bob"

B

A

C

5.15

234

visible from B
Data space

C

B

A

Local data
spaces

Communication range of B

5.15

234

"green"

"red"

"Bob"

"green"

"red"

Figure 1. A physically shared data space.
Only B’s communication area is represented

Local space of B

N1

N2 C

BA

N3

E

N2

ED

N1

N3

E

Visible data space

BA

N2 C

ED

Local space of A

Figure 2. Example of the Peerware sharing
mechanism

each time records are inserted or deleted from the database.
From the point of view of a device’s visible data space,
device arrivals correspond to record insertions and device
departures correspond to record deletions. LIME [15] and
SPREAD [3] are two physically distributed tuple spaces.
Each device embeds a local tuple space. The visible data
space of a device is the union of its local tuple space and
the tuple spaces of the devices located in its communication
area. Peerware [4] proposes a sharing mechanism based on
a tree structure, composed of named nodes and leaves. Each
device stores its data in several local trees and leaves corre-
spond to the data shared by devices. When several devices
are connected, nodes that have the same name are repre-
sented by the same node in the visible tree (cf. figure 2).

2.2. Physical synchronization

In the preceding section we introduced four systems to
share data between connected devices. In the rest of this
article we focus on physically distributed tuple spaces, such
as SPREAD and LIME.

A device can access the data shared by connected de-
vices with reading operations. Physically distributed tuple
spaces propose reading operations similar to the operations
proposed by Linda [5]. A reading operation takes the fol-
lowing form: read<p>, where p is a tuple pattern. A read-

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

the static device print ("hello " + s)
read <"id", string s>

Communication
range

<"id", "Bob">

Release of the read operation
and display of "hello Bob"

<"id", "Bob">

Mobile device
Static device

Program executed by

Figure 3. A physical synchronization

ing operation stays blocked until a tuple that matches p is
available. A tuple is available if it is in the visible tuple
space of the device which executes the operation.

The blocking aspect of the reading operation enables us
to synchronize applications on meetings of devices. On
figure 3, we have a mobile device M and a static device
S. The local tuple space of M contains the tuple <"id",
"Bob">. Initially, S searches for a tuple which must match
the pattern <"id", string s>. The read operation
stays blocked because S’s local tuple space contains no
matching tuple and there is no connected device. When M
enters the communication range of S, M ’s tuple becomes
available to the read operation and the program of S re-
sumes.

With respect to the scale of the entities involved in the
movement pattern, the action “entering in the communica-
tion range of device A” can actually correspond to “meeting
device A. For example, the meeting of two people can be
detected with an acceptable accuracy with bluetooth inter-
faces having a 10 meters range. However, detecting such a
meeting with WiFi interfaces is not possible, due to the too
large communication range of these interfaces.

The mechanism of physical synchronization fits well
ubiquitous computing applications involving movement
patterns of people and objects. Indeed, with reading op-
erations, we can easily synchronize code execution on these
meetings. Consider the program executed by the static de-
vice on figure 3, the statement following the read operation
is executed when a matching tuple becomes available, i.e.
when the mobile device meets the static device.

2.3 Limitations of the physical synchronization
mechanism

The mechanism of physical synchronization suffers from
two limitations: (1) we cannot detect precisely the devices’
meetings; (2) we can only detect meetings of devices, we
cannot detect other kinds movement patterns such as sepa-
rations of devices.

The first limitation is due to the meeting detection
method. As we said the preceding subsection, meetings are
detected by monitoring the network connectivity. There-
fore, when a read operation is released, we only know that a
device is inside the communication range of the device ex-
ecuting the operation; we do not know the relative location
of the devices. For example, we cannot distinguish a de-
vice arriving on the left from a device arriving on the right.
Moreover, if the communication range of devices is too im-
portant, the detection of the meeting is not enough precise;
we can have the situation where the devices can communi-
cate whereas they are too far to consider that they actually
met.

The second limitation is due to the semantic of the read
operation. The read(p) operation stays blocked until a
tuple that matches the pattern p is available. This operation
detects the “arrival” of a tuples, and so the arrival of the de-
vice which carries this tuple. If a tuple is already present the
read operation cannot detect the arrival of a new device.
Similarly, the read operation cannot detect the departure
of a device, which would correspond to the disappearance
of a tuple from the tuples space.

In the next section we present Geo-Linda, which is a
physically shared tuple space that tackles these two limi-
tations.

3. Geo-Linda

In the preceding section, we have presented the principle
of a physically shared tuple space. In such a tuple space,
reading operations enable us to synchronize a program ex-
ecuted by a device on the detection of a meeting with an-
other device. We call this synchronization mechanism phys-
ical synchronization. A device A detects a meeting with a
device B by detecting the arrival of B in its communica-
tion area. We have seen that this detection principle is not
enough precise, with respect to the communication range
of the communication technology used. We have also seen
that reading operation enables us detecting only meetings is
not sufficient to program several applications.

In the following subsections, we present Geo-Linda,
which is a physical share tuple space enabling us to detect
precisely different kinds of movement patterns of devices.
To this end Geo-Linda relies on geometric addressing mode
and proposes new reading operations.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Addressing shape

Tuple's shape

<"car">

read(cone,<"car">)

Figure 4. Geometric addressing. The read op-
eration will be released when the cone inter-
sects the box.

3.1. Geometric addressing

In this section we present the geometric addressing
mode, which enables us to accurately detect movement pat-
terns. Indeed, in the preceding section, we have seen that we
must detect accurately movement patterns, in order to avoid
inconsistencies between applications state and the physical
space state, such as detecting a meeting between two people
which did not yet happen and may never happen.

To detect precisely movement patterns, Geo-Linda asso-
ciates a volume to each tuple and a volume to each read-
ing operation. We call tuple’s shape the volume associated
with a tuple. We call addressing shape the volume associ-
ated with a reading operation. A reading operation is re-
leased when the shape of a matching tuple intersects with
the addressing shape of the operation. Tuples’ shape and
addressing shapes enable us to define the geometric config-
uration of a movement pattern. For example, suppose that
cars signal their presence by publishing a tuple <"car">.
The shape of this tuple is a box encompassing the car. To
detect a car on its left, a car executes an operation such as
read(cone,"car"), with cone being a cone located
on the left of the car (see figure 4). When this operation is
released, the car has just detected a movement pattern such
as: “a car arrived on my left”.

Tuple’s shape and addressing shapes can be chosen
among the following volumes: sphere, cylinder, cone, box,
sector and point. Geo-Linda proposes only elementary vol-
umes to keep up the reactivity of reading operations. In-
deed, reading operations must perform intersection tests be-
tween addressing shapes and tuples’ shape, and the dura-
tion of these tests directly depends on the complexity of the
shapes.

The programmer defines a tuple’s shape relatively to the
location and the orientation of the device which publishes
this tuples. Similarly, he defines the addressing shape of a
reading operation relatively to the location and orientation
of the device which executes this operation. In this way, like

tuples, the defined shapes move with the device. To perform
intersection tests, a device needs to know the relative coor-
dinates of the involved shapes. To this end, we equip each
device with a location mechanism, such as UbiSense tags 1.

The geometric addressing mode enables the programmer
to prevent inconsistencies. Indeed, the programmer should
define tuples shapes and addressing shapes so that, when the
shapes intersect, the corresponding movement pattern actu-
ally happened. In the preceding example, when the cone
intersects the box, the read operation is released and we
detect that a car is actually on the left of car who executes
the operation.

3.2. Detecting movement patterns

In order to detect several kinds of movement patterns
Geo-Linda proposes several reading operations. Indeed, we
have seen in the preceding section that traditional Linda op-
erations do not enable us to detect movement patterns such
as separation of device. To address this limitation, Geo-
Linda proposes two new reading operations: lostOne and
readOnce .

Geo-Linda proposes several reading and writing opera-
tions to access the tuples space. The out(s,t) operation
enables a device to publish the tuple t associated with the
shape s. The tuple t is stored inside the local tuple space.
The drop(t) operation deletes a local tuple matching t.

Geo-Linda proposes four reading operations:

• read(s,p), which returns a tuples that matches the
pattern p and whose shape intersects the addressing
shape s.

• take(s,p), which returns a tuples that matches the
pattern p and whose shape intersects the addressing
shape s. The matching tuple is withdrawn from the
tuple space.

• readOnce(s,p), which returns a new tuple that
matches the pattern p and whose shape intersects the
addressing shape s. This tuple has not been read be-
fore with the readOnce operation.

• lostOne(s,p), which returns a tuple that matches
the pattern p. The shape of the returned tuple inter-
sects the addressing shape s and has disappeared from
the visible tuple space of the entity which executes the
operation. The matching tuple must have been read
before with the readOnce operation.

If several matching tuples are available, the read and
the take operations select one them and return it. We do
not specify how this tuple is chosen. If no matching tuple is

1www.ubisense.net

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

available, the four reading operations remain blocked until
a matching tuple is available.

Geo-Linda generalizes the principle of physical synchro-
nization: each reading operation detects a movement pat-
tern and the program code following this operation is syn-
chronized on the occurrence of the movement pattern.

The operations read and take are standard Linda op-
erations. The readOnce and lostOne operations are
new operations which enable us to synchronize programs
on new movement patterns. We now illustrate how these
reading operation can detect movement patterns.

3.2.1 Meeting detection

We have already seen that the read operation enables us to
detect meetings of two devices. To this end, the first device
publishes a tuple with an out operation and the shape of
this tuple encompasses the entity. The second entity exe-
cutes a read operation. The addressing shape of the read
operation defines the meeting area and the program code
executed after the read operation is synchronized on the
meeting of these devices. The geometric setting of this
meeting is defined by the addressing shape and the tuples
shape.

The semantic of the read operation is also useful
for applications involving a group of entities of the same
kind, such as cars. When several matching tuples are
available the read operation selects one of them and
returns it, detecting one entity of the group. There-
fore, if every entity carries a tuple following the same
pattern <"car", string model>, an operation such
as read(add shape, <"car", string model>)
enables an entity to detect the presence of at least one car in
add shape.

3.2.2 Combining movement detection and state change

Like the read operation, the take operation enables us
to detect meetings of two entities, but the tuple involved
in the detection can participate only to one detection. In-
deed, once the take operation is finished, the tuple has
been withdrawn from the device that initially carried it.

More generally, the take operation enables us to detect
movement patterns that involve a change state of one the
devices; when the movement pattern is finished the state of
a device has changed. For example, consider a pedestrian
stopping a taxi. Once the taxi has stopped, the state of the
pedestrian has changed: he does not want to take a taxi any-
more. Such movement patterns are also present in ticketing
applications, once a person has entered a museum or a bus
he does not carry his ticket anymore. If we consider a per-
son who takes a plane, she undergoes several state changes:
registered, custom checked, boarded. In the tuple space,
these state changes are reflected by withdrawals of tuples.

We illustrate the take operation by showing how a
pedestrian can “stop” a taxi. The taxi executes a take
operation: take(cone, "rq taxi"). The address-
ing shape of the operation is a cone, located in front of
the taxi. To find a taxi, the pedestrian publishes a tuple
<"rq taxi"> whose shape is a cylinder encompassing
the pedestrian. When the take operation is released, a
sound alert is broadcast inside the taxi to notify the driver
that a nearby pedestrian wants to take his taxi. Contrary to
the read operation, the take enables us to keep the tuple
space consistent with the physical space: the take opera-
tion removes a tuple from the tuple space, in order to reflect
the state change of the pedestrian.

3.2.3 Arrival and departures of entities

The readOnce and lostOne operations are usually used
to monitor the arrivals and departures of entities of the
same kind from an area of the physical space. We use the
readOnce operation to detect the arrival of a new entity
and the lostOne operation to detect the departure of an
entity which has been previously detected. The readOnce
operation enables the applications to detect movement pat-
terns such as: “a new entity has entered into the addressing
shape”. Conversely, the lostOne operation enables the
applications to detect movement patterns such as: “an en-
tity has left the addressing shape”.

To illustrate these new operations, we program an appli-
cation wherein a shopping trolley calculates its price with
respect to product insertions and withdrawals. To detect
product insertions and withdrawals, the shopping trolley de-
fines a box that encompasses it. Each product publishes
its price and the shape of the price is a point, which corre-
sponds to the product location. Finally, we have two pro-
cesses which are executed in parallel on the shopping trol-
ley. The first process monitors the insertions of products
and the second one monitors the withdrawals. In this way,
price updates are synchronized on product insertions and
withdrawals.

//First process
while(1) {

readOnce(box_trolley, <"price", float p>);
total += p;

}

//Second process
while(1) {

lostOne(box_trolley, <"price", float p>);
total -= p;

}

In these programs box shopping trolley repre-
sents the addressing shape of the shopping trolley. Each
product publishes a tuple <"price", p>, with p corre-
sponding to the price of the product.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

4. Application

In this section, in order to illustrate how to program ap-
plications with Geo-Linda, we describe the Ubibus applica-
tion [1]. Ubibus helps a visually impaired person to take
the bus. A visually impaired person faces several difficul-
ties when she wants to take the bus: she cannot see her bus
arriving and cannot signal the driver to stop; when several
bus lines stop at her bus stop, she cannot know if the bus
that has just stopped is the one she wants to take. Ubibus
tackles these problems by notifying the visually impaired
person that her bus has just arrived, and by notifying the
bus driver that a person wants to take his bus.

Ubibus is composed of three kinds of movement pat-
terns: the arrivals and departures of pedestrians from bus
stops, and the arrival of the bus at the bus stops. Each pedes-
trian, bus stop and bus executes a program, in order to detect
these movement patterns.

The pedestrians’ program starts by publishing a bus re-
quest. This request is a tuple which is composed by a re-
quest identifier, the line number and the direction. The
shape of the tuple is a cylinder encompassing the pedes-
trian. The program then starts a read operation in order to
detect the bus arrival. The addressing shape of this opera-
tion is a sphere centered on the pedestrian whose radius is
10 meters.

Pedestrians’ program is the following:

out(cylinder, <"req_bus", 16, "beaulieu">);
read(sphere, <"bus_arrived", 16, "beaulieu">);
notify_pedestrian();

A bus stop monitors the number of pedestrians at the bus
stop and publishes the stop request. The bus stop monitors
the number of pedestrians with a program similar to the pro-
gram of the shopping trolley. If the number of pedestrians is
greater than zero, then the bus stop publishes a stop request
for the bus. If all the pedestrians leave the bus stop, then the
bus stop removes the stop request.

//First process
while(1) {

readOnce(box_bus_stop,
<"req_bus", 16, "beaulieu">) ;

num_pedestrian++;
if(num_pedestrian == 1)
out(box_req_stop,

<"req_stop", 16, "beaulieu">)
}

//Second process
while(1) {

lostOne(box_bus_stop,
<"req_bus", 16, "beaulieu">);

num_pedestrian--;
if(num_pedestrian == 0)
drop(<"req_stop", 16,"beaulieu">)

}

A bus stop is a fixed synchronization point between the
pedestrians and the bus. It detects the bus requests of the
pedestrians and publishes a stop request for the correspond-
ing bus. This is the bus stop which actually asks the bus
to stop. If the pedestrian could publish stop requests, he
could stop buses anywhere, like in the previous taxi appli-
cation. This program illustrates an important programming
construct: by using a third static entity, we can chose the
synchronization place between two mobile entities.

The bus program is composed of two processes. The
first process initially publishes a tuple that indicates to the
pedestrian that his bus is arrived. The shape of this tuple
to a sphere encompassing the bus. Then, the process starts
a loop. Each iteration of this loop detects a stop request
and notifies the driver that someone is waiting for his bus.
The bus detects stop requests with a take in order to detect
the waiting people and to reflect the state change of the bus
stop: once the bus has arrived, the bus stop is not requesting
a bus anymore.

The second process detects pedestrians that enter into
the bus with take operations. Detecting pedestrians with
take operations enables the bus to keep the physical mem-
ory consistent with the physical space, by deleting the bus
requests. Indeed, a pedestrian that is inside a bus is not re-
questing a bus anymore. The addressing shapes of these
take operations is a box included in the bus. In this way,
the bus erases the bus requests only when the pedestrians
are actually inside the bus.

//First process
out (sphere,

<"bus_arrived", 16,"beaulieu">);
while(1){

take(cone, <"req_stop", 16,"beaulieu">);
notify_driver();

}

//Second process
while(1) {

take(box_bus,
<"req_bus", 16, "beaulieu">);

}

5. Evaluation

We implemented Geo-Linda in Java by extending the
SPREAD framework [3]. We added the take , readOnce
and lostOne operations, and the geometric addressing
mode. Evaluations were done on Compaq HX4700 running
the J9 JVM.

Implementation and detailed evaluation of the take op-
eration are presented in [13]. The main results are a proof
that atomic tuple transfers are not possible in the presence of
message losses and a protocol which minimizes the number
of non atomic take operations.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

T readOnce lostOne

150 ms 60 50

300 ms 100 90

600 ms 180 160

Table 1. Number of tuples each operation can
handle with respect to the poll period T

Box Cone Cyl. Point Sector Sph. Tetra.

Box 23.0t 55.7t 50.8t 3.9t 19.3t 4.8t 18.7t

Cone 67.4t 65.1t 5.3t 24.0t 5.6t 24.8t

Cyl. 49.6t 5.6t 24.8t 5.2t 40.0t

Point 0.7t 4.0t 1.1t 3.4t

Sector 21.4t 24.2t 25.6t

Sph. 1.0t 11.1t

Tetra. 8.8t

Table 2. Complexity of the intersection tests
with respect to a sphere / sphere test

The readOnce and lostOne operations poll the tuple
space of the connected devices with a period of T , in order
to detect a new or a lost tuple. A tuple is declared as lost if
it is not present in two consecutive polls. This implementa-
tion raises a scalability issue with respect to the number of
matching tuples these two operations can handle. Indeed,
if the handling time of the received tuples is longer than T ,
the reaction time of the operations quickly increases, mak-
ing them unusable. Therefore, we have evaluated the max-
imum number of tuples m that each operation can handle
with respect to T (see table 1). With the current implemen-
tation, the programmer must evaluate the number of tuples
involved in the application in order to determine the best T
to be used. Future implementation will adapt T at runtime.

In order to help the application developer, we evaluated
the relative complexity of the intersection tests between two
volumes. Indeed, when an entity receives a reading request
it must test whether the addressing shape of the operation
intersects with the shape of the local matching tuples. Re-
sults are presented in table 2. To get results independent of
the computing device, the durations presented in the table 2
are calculated with respect to the duration of an intersection
test between two spheres. On the test platform, we have
t=0.09ms. Using this table the application programmer can
make compromises between the accuracy of used volumes
and the duration of the intersection tests.

6. Related works

We presented in section 2 several systems to build phys-
ical shared data spaces. Geo-Linda adds a geometric ad-
dressing mode to the principle of physical data space. Tradi-
tional tuple spaces such as TSpaces [10] or JavaSpaces [11]
do not support the mechanism of physical synchronization.

We already introduced LIME [15, 12] in section 2. LIME

does not propose the readOnce operation, but a reac-
tion mechanism which enables to obtain a similar semantic.
The first major difference between LIME and Geo-Linda is
the geometric addressing mode and the lostOne opera-
tion, which LIME does not support. Moreover, according
to LIME’s authors and this paper [2], LIME suffers from a
scalability problem with respect to the number of cooperat-
ing devices. LIME locally replicates on each device the tu-
ple space of the connected devices. This approach imposes
a distributed transaction when an entity wants to withdraw
a tuple from the tuple space. Geo-Linda does not replicate
the local tuple space of connected devices and thus does not
suffer from this scalability problem.

Römer and Schoch [16] present a programming model,
enabling the creation of applications based on RFID detec-
tion. This programming model is event based and considers
two kinds of events: arrival of new RFID in the reading area
of the RFID reader; departure of an RFID. The readOnce
and lostOne operations enable to detect similar events.

In [18], the authors present a programming model ded-
icated to cooperative artifacts. The programming model
detects movement patterns with logic programming con-
structs. The state of a device, such as his location, and its
direct environment are represented by a set of facts stored
in a local fact base. The programmer defines rules that de-
termine higher level facts, such as the proximity of two en-
tities. These rules are evaluated when events occurs in the
vicinity of the devices.

From the geometric point of view, our work has simi-
larities with research works based on the virtual approach,
which rely on a Geographical Information System (GIS)
[14, 8]. A GIS stores its data in a spatial database [7]. A
spatial database enables the programmer to issue queries
including geometric conditions, such as “retrieve all the
people which live in this area and who are older that 20
years”. As we explained in the introduction, this approach
raises a scalability problem, because it must keep up the
spatial database consistent with the physical space. Geo-
Linda does not rely on a central virtual model of the physi-
cal space. However, we can consider that each device con-
tains a local model of the physical space, consisting of the
shapes of the local tuples. This local model is defined rel-
atively to the location of the device and moves with it, so
it does not need any update to be kept consistent with the
physical space.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Finally, in [9] the authors present a framework to develop
media spaces. A media space is a set of volumes defined in
the physical space. When the user enters a volume, an ac-
tion, such as playing a sound, is triggered. This framework
shares with Geo-Linda the triggering of actions based on
the entrance of the user in a defined volume. However, this
framework is not dedicated to the coordination of multiple
devices, and cannot be used to detect movement patterns
such as a meeting of devices, or the arrival of a new device
in a volume.

7. Conclusion

In this paper we presented Geo-Linda, a physically dis-
tributed tuple space. Geo-Linda is dedicated to the pro-
graming of ubiquitous computing applications, involving
movement patterns of objects and people, such as the ar-
rival of a bus at a bus stop. Geo-Linda extends the notion of
distributed tuple space with new reading operations, which
enable us to detect new movement patterns, and a geometric
addressing mode. The geometric addressing mode enables
Geo-Linda to detect movement patterns precisely: tuples
and reading operations are associated to a volume. An op-
eration is released if its addressing volume intersects the
volume of a matching tuple.

We illustrated Geo-Linda by programming Ubibus, an
application to help visually impaired people to take the bus.
Geo-Linda enables us to program applications by synchro-
nizing program code on the occurrence of movement pat-
terns. We first identify the movement patterns which com-
pose this application and define the reading operations that
will detect them. Then, we insert instructions after these
reading operations. The execution of these instructions is
triggered by the detection of the corresponding movement
patterns.

References

[1] M. Banâtre, P. Couderc, J. Pauty, and M. Becus. Ubibus:
Ubiquitous Computing to Help Blind People in Public
Transport. In Mobile HCI 2004, pages 310–314, 2004.

[2] B. Carbunar, M. T. Valente, and J. Vitek. Coordination and
mobility in CoreLime. Mathematical Structures in Com-
puter Science, 14, 2004.

[3] P. Couderc and M. Banâtre. Ambient Computing Applica-
tions: An Experience with the SPREAD Approach. In An-
nual Hawaii International Conference on System Sciences
(HICSS’03), 2003.

[4] G. Cugola and G. Picco. PeerWare: Core Middleware Sup-
port for Peer-To-Peer and Mobile Systems, 2001.

[5] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 7(1):80–112, 1985.

[6] K. Goto and Y. Kambayashi. A New Passenger Support Sys-
tem for Public Transport using Mobile Database Access. In
VLDB, 2002.

[7] R. H. Güting. An Introduction to Spatial Database Sys-
tems. The VLDB Journal - The International Journal on
Very Large Data Bases, 3(4):357–399, 1994.

[8] M. Hope, T. Chrisp, and N. Linge. Improving Co-operative
Working in the Utility Industry through Mobile Context
Aware Geographic Information Systems. In Proceedings
of the eighth ACM International Symposium on Advances
in Geographic Information Systems, pages 135–140. ACM
Press, 2000.

[9] R. Hul, B. Clayton, and T. Melamed. Rapid Authoring of
Mediascapes. In International Conference on Ubiquitous
Computing (Ubicomp’04), 2004.

[10] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasude-
van, S. Landis, P. Davis, B. Khavar, and P. Bowman. Hitting
the distributed computing sweet spot with tspaces. Comput.
Networks, 35(4):457–472, 2001.

[11] S. Microsystems. Javaspaces. http://www.sun.com/
software/jini/.

[12] A. Murphy, G. Picco, and G.-C. Roman. Lime: A Mid-
dleware for Physical and Logical Mobility. In International
Conference on Distributed Computing System (ICDCS’01),
pages 524–536, 2001.

[13] J. Pauty, P. Couderc, and M. Banâtre. Atomic Token Passing
in the Context of Spontaneous Communications. In Work-
shop on Applications and Services in Wireless Networks
(ASWN’05), 2005.

[14] E. Peytchev and C. Claramunt. Experiences in Building
Decision Support Systems for Traffic and Transportation
GIS. In Proceedings of the ninth ACM International Sym-
posium on Advances in Geographic Information Systems,
pages 154–159. ACM Press, 2001.

[15] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME : Linda
Meets Mobility. In International Conference on Software
Engineering (ICSE’99), pages 368–377, 1999.

[16] K. Römer and T. Schoch. Infrastructure concepts for tag-
based ubiquitous computing applications. In Workshop
on Concepts and Models for Ubiquitous Computing (Ubi-
Comp’02), September 2002.

[17] G. Roussos, J. Tuominen, L. Koukara, O. Seppala,
P. Kourouthanasis, G. Giaglis, and J. Frissaer. A Case Study
in Pervasive Retail. In Proceedings of the second interna-
tional workshop on Mobile commerce, pages 90–94. ACM
Press, 2002.

[18] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray.
Cooperative Artefacts: Assessing Real World Situations
with Embedded Technology. In UBICOMP’04, 2004.

[19] D. Touzet, F. Weis, and M. Banâtre. Sensing and filtering
surrounding data: The persend approach. In Mobile HCI
Workshop on Mobile and Ubiquitous Information Access,
pages 283–297, 2003.

[20] M. Weiser. Some Computer Science Issues in Ubiquitous
Computing. Communications of the ACM, Back to the
Real World, Special issue on Computer Augmented Environ-
ments, 36(7):75–84, 1993.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

